作物杂志,2021, 第5期: 108–113 doi: 10.16035/j.issn.1001-7283.2021.05.016

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

施氮量和播种量对大麦[2011(07)814]鲜叶产量和品质的影响

邓超超(), 王蕾, 徐也, 周琦, 宿翠翠, 蔡小斌, 缪平贵, 赵海鹏, 张燕, 王育才, 张想平()   

  1. 甘肃省农业工程技术研究院,733006,甘肃武威
  • 收稿日期:2020-10-30 修回日期:2021-06-22 出版日期:2021-10-15 发布日期:2021-10-14
  • 通讯作者: 张想平
  • 作者简介:邓超超,主要从事大麦栽培育种研究,E-mail: 865851869@qq.com
  • 基金资助:
    国家大麦青稞产业技术体系(CARS-05);甘肃省青年科技基金计划(18JR3RA009);甘肃省科技计划重大专项项目(18ZD2NA008)

Effects of Nitrogen and Sowing Rate on Yield and Quality of Fresh Leaves in Barley [2011(07)814]

Deng Chaochao(), Wang Lei, Xu Ye, Zhou Qi, Su Cuicui, Cai Xiaobin, Miao Pinggui, Zhao Haipeng, Zhang Yan, Wang Yucai, Zhang Xiangping()   

  1. Gansu Academy of Agri-Engineering Technology, Wuwei 733006, Gansu, China
  • Received:2020-10-30 Revised:2021-06-22 Online:2021-10-15 Published:2021-10-14
  • Contact: Zhang Xiangping

摘要:

为了探究施氮量和播种量对新选育大麦[2011(07)814]鲜叶产量和品质的影响,采用二因素4水平裂区试验设计,研究4个施氮量(N1:150kg/hm2,N2:180kg/hm2,N3:210kg/hm2,N4:240kg/hm2)和4个播种量(S1:375万粒/hm2,S2:450万粒/hm2,S3:525万粒/hm2,S4:600万粒/hm2)对大麦孕穗期鲜叶产量、叶绿素含量(SPAD值)、旗叶面积、蛋白质和微量元素含量的影响。结果表明,施氮量、播种量及二者的互作效应对大麦孕穗期鲜叶产量、SPAD值、旗叶面积、蛋白质和微量元素含量的影响均达到显著(P<0.05)或极显著(P<0.01)水平;随施氮量和播种量的增加,大麦孕穗期鲜叶产量、旗叶面积、SPAD值、蛋白质和微量元素含量均呈先增加后降低的趋势,在N2S3或N3S2处理组合下达到峰值;N2S3处理组合鲜叶产量、SPAD值、旗叶面积和蛋白质含量较N1S1处理组合分别提高了102.70%、16.09%、86.39%和33.31%,N2S3处理组合Fe(295mg/kg)、Mn(76.59mg/kg)、Cu(8.10mg/kg)、Zn(30.94mg/kg)元素含量显著高于其他处理组合。因此,在甘肃省河西地区种植大麦[2011(07)814]获取鲜叶时,根据土壤肥力情况建议一次性施氮量180~210kg/hm2以及播种量450万~525万粒/hm2,不仅能增加大麦鲜叶产量、SPAD值和旗叶面积,而且有利于提高鲜叶蛋白质和微量元素含量。

关键词: 大麦, 施氮量, 播种量, 鲜叶产量, 叶绿素, 蛋白质, 微量元素

Abstract:

To investigate the effects of nitrogen and sowing rate on the yield and quality of fresh leaves of newly selected barley [2011(07)814], a two-factor four-level split-plot experiment design was adopted to study four nitrogen application rates (N1: 150kg/ha, N2: 180kg/ha, N3: 210kg/ha, N4: 240kg/ha) and four sowing rates (S1: 3.75 million seeds/ha, S2: 4.50 million seeds/ha, S3: 5.25 million seeds/ha, S4: 6.00 million seeds/ha) were used in this study. The results showed that the effects of nitrogen, sowing rate, and their interactions on fresh leaves biomass, chlorophyll content (SPAD value), flag leaf area, protein content, and trace element contents of barley fresh leaves at booting stage were significant (P<0.05) or extremely significant (P<0.01). And these were firstly increased and then decreased with the increase of nitrogen and the sowing rates, N2S3 or N3S2 treatment was the highest. Compared with N1S1 treatment, the fresh leaves yield, SPAD value, flag leaf area, and protein content of fresh leaves of N2S3 treatment increased by 102.70%, 16.09%, 86.39%, and 33.31%, respectively. The contents of Fe (295mg/kg), Mn (76.59mg/kg), Cu (8.10mg/kg), and Zn (30.94mg/kg) under N2S3 treatment were significantly higher than other treatments. Therefore, when the one-time nitrogen rate was 180-210kg/ha and the sowing rate was 4.50-5.25 million/ha in the Hexi area of Gansu, it could not only increase the yield, SPAD value, and flag leaf area of fresh barley leaves, but also increase the protein and trace element contents of fresh barley leaves.

Key words: Barley, Nitrogen rate, Sowing rate, Fresh leaves yield, Chlorophyll, Protein, Trace elements

表1

施氮量、播种量和二者互作效应对大麦鲜叶产量及品质指标的影响

项目Item 因素Factor
施氮量
Nitrogen rate
(N)
播种量
Sowing rate
(S)
互作效应
(N×S)
鲜重Fresh weight ** ** *
干重Dry weight ** * *
SPAD值SPAD value ** ** *
旗叶面积Flag leaf area ** ** **
蛋白质含量Protein content ** ** *
Fe ** * *
Mn ** * ns
Cu ** ** **
Zn ** * ns

表2

不同施氮量和播种量处理组合下大麦叶片产量

处理Treatment 鲜重Fresh weight 干重Dry weight
N1S1 9598.94±283.10g 2474.68±48.73de
N1S2 11327.26±572.33fg 2384.42±78.37e
N1S3 11570.45±728.43fg 2481.77±84.96de
N1S4 10099.47±156.06g 2488.41±93.18de
N2S1 15006.81±386.74cd 2726.82±330.46cd
N2S2 18091.31±200.97b 4024.40±767.56ab
N2S3 19374.38±678.29a 4218.84±187.07a
N2S4 14786.23±575.52cd 2910.45±49.63c
N3S1 15977.61±123.46bc 3377.31±307.31bc
N3S2 19457.15±323.07a 3904.03±157.72ab
N3S3 17713.24±351.74bc 3450.70±183.04bc
N3S4 15660.15±679.32cd 3031.40±112.38c
N4S1 12333.63±612.31ef 2736.00±127.28cd
N4S2 14212.36±828.21cde 2966.28±228.93c
N4S3 13729.48±228.59de 2965.66±288.77c
N4S4 14810.37±637.10cd 3343.51±137.21bc

图1

不同施氮量与播种量处理下大麦旗叶SPAD值 不同小写字母表示差异显著(P<0.05),下同

图2

不同施氮量与播种量处理下大麦旗叶面积

图3

不同施氮量和播种量处理组合下大麦鲜叶蛋白质含量

表3

不同施氮量和播种量的处理组合下大麦鲜叶微量元素含量

处理Treatment 微量元素Trace element
Fe (×100) Mn Cu Zn
N1S1 2.09±0.03f 67.80±1.19de 6.34±0.54f 23.49±2.05fg
N1S2 2.20±0.03def 69.22±1.15cd 6.37±0.29f 23.91±0.73f
N1S3 2.14±0.02ef 68.60±3.06de 6.66±0.35ef 24.14±1.02Sef
N1S4 2.21±0.03def 67.46±1.42e 6.46±0.15ef 22.98±1.22g
N2S1 2.60±0.07b 72.84±2.09b 6.84±0.12ef 25.84±2.16cd
N2S2 2.30±0.05cde 70.51±1.37bc 6.93±0.31e 27.54±1.38b
N2S3 2.95±0.09a 76.59±3.13a 8.10±0.23a 30.94±0.90a
N2S4 2.47±0.12bc 69.69±0.31cd 7.10±0.11b 27.29±0.58b
N3S1 2.46±0.01bc 74.65±1.16b 8.07±0.02ab 26.74±0.64c
N3S2 2.79±0.06ab 77.06±3.31a 8.22±0.48a 29.72±0.75a
N3S3 2.38±0.07cd 75.75±0.05ab 7.87±0.55b 26.90±1.01c
N3S4 2.40±0.03c 71.42±1.89b 7.42±0.22bc 25.07±0.98de
N4S1 1.66±0.08g 67.33±2.23e 7.21±0.10cd 27.15±1.89ab
N4S2 1.82±0.03fg 65.67±0.75ef 6.93±0.30ef 26.73±4.17cd
N4S3 1.70±0.01g 64.45±2.33f 7.15±0.03cd 24.06±2.38ef
N4S4 1.77±0.01g 63.79±0.71f 6.96±0.52Se 23.17±1.01g

表4

鲜叶鲜重、SPAD值、旗叶面积、蛋白质含量和微量元素含量的相关性分析

项目
Item
SPAD值
SPAD value
旗叶面积
Flag leaf area
蛋白质含量
Protein content
Fe Mn Cu Zn
鲜重Fresh weight 0.911** 0.880** 0.775** 0.602* 0.691** 0.832** 0.806**
SPAD值SPAD value 0.828** 0.729** 0.377 0.468 0.744** 0.715**
旗叶面积Flag leaf area 0.906** 0.335 0.448 0.719** 0.820**
蛋白质含量Protein content 0.297 0.476 0.663** 0.853**
Fe 0.896** 0.526* 0.618*
Mn 0.728** 0.717**
Cu 0.767**
[1] 中国农业科学院作物科学研究所, 国家大麦青稞产业技术体系. 中国大麦品种志(1986-2015). 北京: 中国农业科学技术出版社, 2018: 11.
[2] 黄相国, 沈裕虎. 麦绿素及麦绿素产品的开发前景. 麦类作物学报, 2003, 23(1):79-80.
[3] 张辉, 陈召亮, 乔勇进. 麦绿素保健功能及加工工艺研究进展. 农产品加工(学刊), 2013(19):51-54,57.
[4] 刘新华, 赵晨霞, 李治龙, 等. 新型天然保健食品麦绿素的制备与研究. 农产品加工, 2009(1):54-56.
[5] 史娥普. 大自然神奇的返老还童剂——大麦嫩叶. 养生大世界, 2007(10):53-53.
[6] Osawa T, Katsuzaki H, Hagiwara Y, et al. A novel antioxidant isolated from young green barley leaves. Journal of Agricultural and Food Chemistry, 1992, 40(7):1135-1138.
doi: 10.1021/jf00019a009
[7] 武红霞, 邬飞波, 张国平. 不同肥料处理对麦绿素专用大麦嫩叶产量和品质的影响. 植物营养与肥料学报, 2003, 9(4):432-436.
[8] 徐银萍, 潘永东, 包奇军, 等. 灌水与肥密配置对甘啤7号大麦产量和蛋白质的影响. 中国土壤与肥料, 2015(5):99-103.
[9] 张金汕, 董庆国, 方伏荣, 等. 种植密度和施氮量对啤用大麦生长、产量及品质的影响. 中国农业大学学报, 2016, 21(9):23-32.
[10] 陈新红. 作物栽培学实验. 南京: 南京大学出版社, 2014.
[11] 常鑫, 李法计, 张兆萍, 等. 小麦旗叶长、宽及面积的QTL分析. 西北植物学报, 2014, 34(5):896-901.
[12] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
[13] 沈会权, 陈晓静, 陈和, 等. 氮肥用量及运筹对不同啤酒大麦产量和啤用品质的影响. 大麦与谷类科学, 2008(2):29-32.
[14] 欧立军, 康林玉, 赵激, 等. 作物氮素吸收与利用研究进展. 北方园艺, 2018(7):151-156.
[15] 乔海龙, 陈健, 沈会权, 等. 施氮量和种植密度对苏啤3号大麦鲜叶产量及品质的影响. 麦类作物学报, 2009, 29(4):680-684.
[16] 周瑜, 苏旺, 王舰, 等. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016, 42(6):873-885.
[17] 张建军, 樊廷录, 党翼, 等. 密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响. 中国农业科学, 2015, 48(22):4574-4584.
[18] 关佳威, 姬明飞, 王志强, 等. 不同种植密度条件下单混种作物的生长曲线. 草业科学, 2015, 32(8):1243-1251.
[19] Reich P B, Tjoelker M G, Machado J L, et al. Universal scaling of respiratory metabolism,size and nitrogen in plants. Nature, 2006, 439(7075):457-461.
doi: 10.1038/nature04282
[20] 温明星, 陈爱大, 李东升, 等. 密度和氮肥施用量对镇麦168产量和品质的影响. 核农学报, 2013, 27(10):1575-1580.
[21] 张小涛, 黄玉芳, 马晓晶, 等. 播种量和施氮量对不同基因型冬小麦干物质累积、转运及产量的影响. 植物生理学报, 2017, 53(6):1067-1076.
[22] 张衍华, 毕建杰, 王琦, 等. 施肥对不同品种小麦光合速率及叶绿素含量的影响. 山东农业科学, 2007(1):77-78.
[23] 马冬云, 郭天财, 王晨阳, 等. 施氮量对冬小麦灌浆期光合产物积累、转运及分配的影响. 作物学报, 2008, 34(6):1027-1033.
[24] 张永丽, 蓝岚, 李雁鸣, 等. 种植密度对杂种小麦C6-38/Py85-1群体生长和籽粒产量的影响. 麦类作物学报, 2008, 28(1):113-117.
[25] 赵会杰, 邹琦, 郭天财, 等. 密度和追肥时期对重穗型冬小麦品种L906群体辐射和光合特性的调控效应. 作物学报, 2002, 28(2):270-277.
[26] 华水金, 杨宇虹, 赵菊英, 等. 氮肥对水田与旱地烤烟叶绿素动态、生长及产量的影响. 中国土壤与肥料, 2005(6):31-35.
[27] 王玥玮, 温禄云, 王麒麟. 从大麦青叶中提取麦绿素的研究. 食品研究与开发, 2013(10):54-56.
[28] 张炳运, 介晓磊, 刘芳, 等. 微量元素配施对土壤及紫花苜蓿中微量元素的影响. 土壤通报, 2009, 40(1):144-149.
[29] 张睿, 郭月霞, 南春芹. 不同施肥水平下小麦籽粒中部分微量元素含量的研究. 西北植物学报, 2004(1):125-129.
[30] 袁继超, 刘丛军, 俄胜哲, 等. 施氮量和穗粒肥比例对稻米营养品质及中微量元素含量的影响. 植物营养与肥料学报, 2006, 12(2):2183-2187,2200.
[31] 张淑香, 王小彬, 金柯, 等. 干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响. 植物营养与肥料学报, 2001, 7(4):391-396.
[32] 文建成, 汤利, 谭学林, 等. 种植环境和施氮水平影响粳稻稻米铁、锌矿质元素含量. 作物杂志, 2010(1):61-65.
[33] 俄胜哲, 袁继超, 丁志勇, 等. 氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响. 中国水稻科学, 2005(5):434-440.
[34] 李峰, 田霄鸿, 陈玲, 等. 栽培模式、施氮量和播种密度对小麦子粒中锌、铁、锰、铜含量和携出量的影响. 土壤肥料, 2006(2):42-46.
[1] 曹丽霞, 周海涛, 张新军, 石碧红, 张丽霞, 李云霞, 刘君馨, 白静, 赵世锋. 播种量对冀北地区2个荞麦品种产量的影响[J]. 作物杂志, 2021, (5): 140–145
[2] 刘文龙, 宁尚辉, 曹明锋, 祝利, 高玉珍, 张学伟, 文梓祥, 姜宝迪, 景延秋, 邓勇. 桃源县植烟土壤微量元素与烟叶常规化学成分相关性分析[J]. 作物杂志, 2021, (5): 176–180
[3] 张嘉雯, 卢绍浩, 赵铭钦, 钟秋, 王俊, 易凯, 向欢. 施氮量对四川雪茄烟叶碳氮代谢及品质的影响[J]. 作物杂志, 2021, (4): 159–165
[4] 宋瑞娇, 冯彩军, 齐军仓. 富氢水对干旱胁迫下大麦种子萌发及幼苗生物量分配的影响[J]. 作物杂志, 2021, (4): 206–211
[5] 杨磊, 金延迪, 刘侯俊. 铁、镉及其互作对水稻光合原初反应的影响[J]. 作物杂志, 2021, (4): 144–151
[6] 高鹏, 郭美俊, 杨雪芳, 董淑琦, 温银元, 郭平毅, 原向阳. 谷子和玉米叶片光合荧光参数对烟嘧磺隆胁迫的响应差异[J]. 作物杂志, 2021, (3): 70–77
[7] 张希, 王慧芳, 代卓毅, 薛刚, 徐世晓, 杨铁钊. 基因型、施氮量及其互作对烤烟多酚类物质的影响[J]. 作物杂志, 2021, (3): 84–90
[8] 曹晓燕, 武爱莲, 王劲松, 董二伟, 焦晓燕. 施氮量对高粱产量、品质及氮利用效率的影响[J]. 作物杂志, 2021, (2): 108–115
[9] 张芸萍, 郭山虎, 张锦涛, 解燕, 易克, 李强. 曲靖烟区烟叶微量元素与土壤pH值关系研究[J]. 作物杂志, 2021, (2): 178–182
[10] 王玉娇, 曹祺, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才, 石书兵. 不同土壤条件下化学调控对小麦产量和品质的影响[J]. 作物杂志, 2021, (2): 96–100
[11] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响[J]. 作物杂志, 2021, (1): 143–149
[12] 周元成, 陈爱萍, 曹永立, 王镇, 赵玉坤, 侯东红, 解丽丽. 大麦籽粒灌浆期β-淀粉酶积累动态与气象因子关系研究[J]. 作物杂志, 2020, (6): 123–127
[13] 赵宇杨, 宋健, 邱丽娟. 大豆G位点近等基因系叶片类囊体蛋白质组比较分析[J]. 作物杂志, 2020, (6): 8–16
[14] 吴琼, 丁凯鑫, 余明龙, 黄文婷, 左官强, 冯乃杰, 郑殿峰. 新型植物生长调节剂B2对玉米光合荧光特性及产量的影响[J]. 作物杂志, 2020, (5): 174–181
[15] 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142–148
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!