作物杂志,2024, 第1期: 204–213 doi: 10.16035/j.issn.1001-7283.2024.01.027

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

解磷菌协同秸秆替代磷肥对苦荞生长及产量和品质的影响

郝亚妮1(), 裴红宾2,3(), 高振峰4, 张轶珺3, 杨珍平1   

  1. 1山西农业大学农学院,030801,山西太谷
    2山西师范大学现代文理学院,041004,山西临汾
    3山西师范大学生命科学学院,030031,山西太原
    4山西农业大学(山西省农业科学院)农产品贮藏保鲜研究所,030031,山西太原
  • 收稿日期:2022-09-27 修回日期:2023-02-07 出版日期:2024-02-15 发布日期:2024-02-20
  • 通讯作者: 裴红宾,研究方向为植物生理生态,E-mail:bbpei65110@163.com
  • 作者简介:郝亚妮,研究方向为植物生理生态,E-mail:hyni0120@126.com
  • 基金资助:
    山西师范大学现代文理学院基础研究项目(2020JCYJ17)

Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat

Hao Yani1(), Pei Hongbin2,3(), Gao Zhenfeng4, Zhang Yijun3, Yang Zhenping1   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2College of Modern Arts and Sciences, Shanxi Normal University, Linfen 041004, Shanxi, China
    3College of Life Sciences, Shanxi Normal University, Taiyuan 030031, Shanxi, China
    4Agricultural Products Storage and Preservation Research Institute, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taiyuan 030031, Shanxi, China
  • Received:2022-09-27 Revised:2023-02-07 Online:2024-02-15 Published:2024-02-20
  • Contact: Pei Hongbin

摘要:

为实现苦荞节磷栽培,采用盆栽试验,以苦荞品种晋荞6号为试验材料,设置秸秆[0g/kg土壤(J0)、4g/kg土壤(J1)]和有机磷降解菌Bacillus vallismortis gz4-1的菌液浓度[0(P0)、104(P1)、106(P2)、108(P3)、1010 (P4) cfu/mL]两因素复合处理,以正常施肥为对照(CK),研究了有机磷降解菌B.vallismortis gz4-1与秸秆配施对苦荞生长及产量和品质的影响。结果表明,与不施秸秆相比,解磷菌―秸秆复合处理可显著提高苦荞根系质量、主根长、总根长和产量,且随着菌液浓度的增加表现为先升高后降低的趋势;解磷菌―秸秆复合处理以菌液浓度P2和P3效果较优,且在P2浓度下苦荞根系表面积、根系体积、茎粗、根系活力、酸性磷酸酶活性和果穗数达到最优生长值,但在P3浓度下苦荞根系鲜重和干重、主根长、总根长、株高、茎叶鲜重和干重、叶面积、单株粒重、千粒重、产量和黄酮含量达到最优生长值。另外,同CK相比,解磷菌协同秸秆替代磷肥在P2、P3解磷菌浓度时还可促进苦荞生产并显著提高产量。因此,推荐解磷菌―秸秆复合处理时的解磷菌较优接种浓度为106~108 cfu/mL。

关键词: 苦荞, 有机磷降解菌, 磷肥替代, 秸秆, 磷吸收

Abstract:

In order to achieve low-phosphorus cultivation of Tartary buckwheat, pot experiments were conducted using the Tartary buckwheat variety ?Jinqiao 6? as the test material, the combination treatments of straw [0 g/kg soil (J0), 4 g/kg soil (J1)] and Bacillus vallismortis gz4-1, bacterial liquid concentration [0 (P0), 104 (P1), 106 (P2), 108 (P3), 1010 (P4) cfu/mL] were set. Using normal fertilization as control (CK) to determine the effects of combined application of organophorus degrading bacteria B.vallismortis gz4-1 and straw on the growth, yield and quality of Tartary buckwheat. The results showed that compared with no straw application, B.vallismortis gz4-1-straw could significantly improve the root mass, main root length, total root length and yield of Tartary buckwheat, and showed a trend of increasing first and then decreasing with the increase of bacterial solution concentration. In the combined treatment of B.vallismortis gz4-1-straw, the bacterial liquid concentration of P2 and P3 had the best effects, and the root surface area, root volume, stem diameter, root activity, acid phosphatase activity and the number of ears of Tartary buckwheat reached the optimal growth value under the P2 treatment. However, the root fresh weight, dry weight, main root length, total root length, plant height, stem and leaf fresh weight, dry weight, leaf area, grain weight per plant, 1000-grain weight, yield and flavonoids content of Tartary buckwheat reached the optimal growth value under P3 treatment. In addition, compared with CK, the replacement of P fertilizer by B.vallismortis gz4-1 and straw could promote the production of Tartary buckwheat and significantly increase the yield of Tartary buckwheat when the concentration of B.vallismortis gz4-1 were the concentrations of P2 and P3. Therefore, it was recommended that the optimal concentration of B.vallismortis gz4-1 in the combined treatment of B.vallismortis gz4-1-straw were 106-108 cfu/mL.

Key words: Tartary buckwheat, Organophosphate degrading bacteria, Phosphate substitute, Straw, Phosphorus absorption

表1

解磷菌协同秸秆替代磷肥对苦荞盛花期根系形态指标的变化

处理
Treatment
鲜重
Fresh weight (g)
干重
Dry weight (g)
主根长
Main root length (cm)
总根长
Total root length (cm)
根系表面积
Root surface area (cm2)
根系体积
Root volume (cm3)
CK 2.45±0.21b 0.25±0.06bc 29.47±0.92cd 709.8±43.3ab 42.10±3.93ab 5.66±1.29abc
J0 P0 1.64±0.24de 0.15±0.01d 20.07±1.14ef 395.7±50.5d 23.70±2.80c 2.51±0.44c
P1 1.20±0.08f 0.16±0.02d 16.37±0.92f 543.9±54.6c 29.34±2.98bc 3.52±0.57bc
P2 2.16±0.16bc 0.16±0.03d 36.30±0.32b 696.3±83.6ab 45.03±12.64ab 6.58±2.68ab
P3 2.07±0.20bc 0.26±0.06bc 36.10±2.17b 424.6±31.5d 22.92±1.70c 2.38±0.11c
P4 0.98±0.17e 0.12±0.02d 26.00±0.42e 394.1±82.3c 22.79±4.88c 2.03±0.57c
J1 P0 1.07±0.47e 0.28±0.13bc 30.53±0.90cd 461.2±105.2d 22.11±3.39c 1.68±0.26c
P1 2.58±0.54b 0.37±0.02ab 31.07±1.57cd 512.7±77.5c 24.80±3.44c 1.97±0.28c
P2 2.53±0.14b 0.39±0.02ab 37.63±2.69b 830.8±46.7a 48.99±5.48a 7.64±2.28a
P3 3.33±0.42a 0.47±0.05a 54.90±6.41a 562.1±98.9c 30.39±4.79bc 3.37±0.84bc
P4 1.83±0.50d 0.35±0.11ab 31.60±0.66cd 598.3±62.4c 31.23±0.31bc 3.69±0.76bc

图1

解磷菌协同秸秆替代磷肥对苦荞盛花期根系活力的变化 不同小写字母表示处理间差异达显著水平(P < 0.05),下同。

表2

解磷菌协同秸秆替代磷肥对苦荞盛花期茎叶形态指标的变化

处理
Treatment
茎粗
Stem diameter (mm)
株高
Plant height (cm)
鲜重(g/株)
Fresh weight (g/plant)
干重(g/株)
Dry weight (g/plant)
叶面积
Leaf area (cm2)
花序数
Flower ordinal number
CK 5.06±0.30ab 69.77±0.76cd 25.67±1.70b 2.34±0.47bc 30.99±2.76de 11.00±0.88bcd
J0 P0 3.23±0.03e 53.93±1.51f 12.53±0.09d 1.48±0.07de 20.75±19.06f 8.00±0.58e
P1 3.85±0.39cde 60.60±1.25ef 16.40±1.15cd 1.83±0.21cde 27.69±2.82ef 9.00±0.38de
P2 5.03±0.15ab 66.43±3.02de 25.07±1.58b 2.80±0.21b 38.42±0.88c 10.00±1.20cde
P3 4.33±0.34cd 74.13±1.23bc 24.70±1.62b 2.54±0.23bc 37.67±1.01c 12.00±0.88abc
P4 3.59±0.14de 60.67±1.89ef 13.83±1.48d 1.47±0.07de 29.86±1.38e 9.00±0.33de
J1 P0 4.57±0.02bc 60.87±1.79ef 12.49±0.34d 1.11±0.14e 28.97±1.67e 9.00±0.58de
P1 4.83±0.13b 67.10±1.10de 15.05±1.13cd 1.78±0.12cde 30.35±1.84de 9.00±0.33de
P2 5.81±0.40a 77.33±3.53ab 25.75±1.11b 2.29±0.11bc 50.31±4.32b 13.00±0.33ab
P3 4.88±0.42b 83.27±4.29a 32.05±2.46a 4.27±0.47a 58.36±2.36a 13.00±0.57a
P4 4.87±0.09b 65.30±0.55de 19.16±2.33c 2.11±0.17bcd 45.91±1.68b 9.00±0.88de

图2

解磷菌协同秸秆替代磷肥对苦荞盛花期酸性磷酸酶活性的变化

图3

解磷菌协同秸秆替代磷肥对苦荞盛花期叶绿素含量的变化

表3

解磷菌协同秸秆替代磷肥对苦荞土壤理化性质的变化

处理Treatment pH 有机质Organic matter (g/kg) 速效磷Available phosphorus (mg/kg) 速效钾Available potassium (mg/kg)
Natural soil生土 8.44±0.03a 20.63±1.15a 10.55±1.08b 111.40±0.18i
CK 8.08±0.02b 5.15±0.01d 14.06±0.40a 149.83±0.99f
J0 P0 8.07±0.03b 7.71±0.03b 5.93±0.13de 121.50±0.64h
P1 8.02±0.02bc 7.20±0.07b 5.82±0.68de 142.40±1.07g
P2 8.01±0.00bc 5.01±0.01d 4.80±0.20e 217.13±2.23c
P3 8.01±0.02bcd 5.15±0.01d 5.62±0.08de 123.53±1.59h
P4 7.96±0.04cde 6.07±0.04cd 6.38±0.18d 123.43±1.07h
J1 P0 7.95±0.02cde 7.54±0.18b 4.73±0.10e 252.57±1.56a
P1 7.98±0.00cde 5.84±0.05cd 5.39±0.07de 239.73±3.55b
P2 7.93±0.04def 6.63±0.07bc 5.27±0.21de 157.33±0.96e
P3 7.90±0.00ef 5.52±0.16d 5.04±0.04de 166.20±0.51d
P4 7.86±0.04f 6.86±0.01bc 8.82±0.15c 163.33±1.63d

表4

解磷菌协同秸秆替代磷肥对苦荞成熟期产量及构成因素的变化

处理
Treatment
单株粒重
Grain weight per plant (g)
千粒重
1000-kernel weight (g)
单株果穗数
Number of ears per plant
产量(g/盆)
Yield (g/pot)
CK 2.69±0.07b 14.38±0.96abc 14.67±0.88b 13.90±0.75d
J0 P0 0.89±0.04g 10.65±0.14d 6.00±0.58e 7.54±0.12g
P1 1.26±0.12f 12.32±0.32cd 9.67±0.33cd 10.58±0.38f
P2 1.90±0.04d 13.43±0.54bc 11.00±0.58c 15.88±0.22c
P3 1.73±0.08de 14.27±0.78abc 10.67±0.67c 12.60±0.17de
P4 1.54±0.05e 12.66±0.83cd 6.67±0.67e 12.28±0.16de
J1 P0 1.73±0.08de 11.10±0.38d 7.67±0.33de 12.07±0.20ef
P1 1.75±0.06de 12.23±0.40cd 10.67±1.45c 13.43±0.36de
P2 2.36±0.03c 15.53±1.35ab 16.33±0.33a 18.37±1.07a
P3 3.01±0.13a 15.99±0.43a 14.67±0.88b 16.81±0.94b
P4 2.35±0.07c 13.46±0.40bc 11.33±1.20c 13.39±0.13de

图4

解磷菌协同秸秆替代磷肥对苦荞成熟期籽粒蛋白质含量的变化

图5

解磷菌协同秸秆替代磷肥对苦荞成熟期籽粒黄酮含量的变化

图6

解磷菌协同秸秆替代磷肥苦荞籽粒品质与植株各指标相关性分析

[1] Ogbo F C. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology, 2010, 101(11):4120-4124.
doi: 10.1016/j.biortech.2009.12.057 pmid: 20138509
[2] Gyaneshwar P, Kumar G N, Parekh L J, et al. Role of soil microorganisms in improving P nutrition of plants. System Sciences and Comprehensive Studies in Agriculture, 2002, 245 (1):133-143.
[3] 徐凤花, 刘永春. 秸杆还田的增磷作用及对植株全磷含量干物质积累的影响. 黑龙江八一农垦大学学报, 1997(3):1-5.
[4] Mohammadi G. Phosphate biofertilizers as renewable and safe nutrient suppliers for cropping systems: A Review// Kumar V,Kumar M,Sharma S,et al. Probiotics and Plant Health. Springer Singapore, 2017:113-130.
[5] Raghuwanshi R. Opportunities and challenges to sustainable agriculture in India. NEBIO, 2012, 3:78-86.
[6] Khan K S, Joergensen R G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technology, 2009, 100(1):303-309.
doi: 10.1016/j.biortech.2008.06.002 pmid: 18632264
[7] Natalie B, Widyasmara A, Arifin M, et al. Isolation and screening of phosphate solubilizing bacteria from rhizosphere of tea (Camellia sinensis L.) on andisols. International Journal, 2017, 4(4):95-100.
[8] Yu X, Liu X, Zhu T H, et al. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils, 2011, 47(4):437-446.
doi: 10.1007/s00374-011-0548-2
[9] Ghosh U, Subhashini P, Dilipan E, et al. Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil. Journal of Ocean University of China, 2012, 11(1):86-92.
doi: 10.1007/s11802-012-1844-7
[10] Hansen V, Bonnichsen L, Nunes I, et al. Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 2020, 56(1):97-109.
doi: 10.1007/s00374-019-01401-7
[11] Ahmad D A, Bhat A K. Genotypic characterization and efficacy of phosphate solubilising bacteria in improving the crop yield of Zea mays. Forests, 2019, 14:34-39.
doi: 10.3390/f14010034
[12] Prasad M, Dawson J, Yadav R S. Effect of different nitrogen sources and phosphate solubilizing bacteria on growth and yield of grain cowpea [Vigna unguiculata (L.) Walp.]. Crop Research, 2012, 44(1/2):59-62.
[13] Yan H L, Liu C Y, Zhao J L, et al. Genome-wide analysis of the NF-Y gene family and their roles in relation to fruit development in Tartary buckwheat (Fagopyrum tataricum). International Journal of Biological Macromolecules, 2021, 1(190):487-498.
[14] Liu C, Ye X, Zou L, et al. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development-ScienceDirect. International Journal of Biological Macromolecules, 2021, 171:435-447.
doi: 10.1016/j.ijbiomac.2021.01.016 pmid: 33434548
[15] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导(第4版). 北京: 高等教育出版社, 2009.
[16] 孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究. 应用生态学报, 2002, 13(3):379-381.
[17] 刘三才, 李为喜, 刘方, 等. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价. 植物遗传资源学报, 2007, 8(3):317-320.
[18] 张琪, 刘慧灵, 朱瑞, 等. 苦荞麦中总黄酮和芦丁的含量测定方法的研究. 食品科学, 2003, 24(7):113-116.
[19] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
[20] 刘新亮, 李彦, 戴小英, 等. 配方施肥对芳樟幼林生长及叶精油含量的影响. 南方林业科学, 2019, 47(6):7-10,63.
[21] Singh G T, Erik N N. Rhizosphere research:a tool for treating phosphorus efficient crop varieties. WCSS, 2002, 1270(64):1-15.
[22] Zhu J, Zhang C, Lynch J P. The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology, 2010, 37(4):313-322.
doi: 10.1071/FP09197
[23] Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002, 29:751-760.
doi: 10.1046/j.1365-313X.2002.01251.x
[24] Misson J, Raghothama K, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11934-11939.
[25] Schachtman D P, Shin R. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology, 2007, 58(1):47-69.
doi: 10.1146/arplant.2007.58.issue-1
[26] 杨春婷, 张永清, 董璐, 等. 不同基因型苦荞幼苗对低磷胁迫的响应. 植物科学学报, 2018, 36(6):859-867.
[27] Nadira U A, Ahmed I M, Zeng J, et al. The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60(6):832-842.
doi: 10.1080/00380768.2014.949853
[28] Gaume A, Machler F, León C D, et al. Low-P tolerance by maize (Zea mays L.) genotypes:Significance of root growth and organic acids and acid phosphatase root exudation. Plant Soil, 2001, 228:253-264.
doi: 10.1023/A:1004824019289
[29] 李娟, 王文丽, 卢秉林. 解磷微生物菌剂对油菜生长及产量的影响. 中国土壤与肥料, 2010(3):67-69.
[30] 吕丽华, 姚海坡, 申海平, 等. 不同肥料种类对小麦产量和土壤肥力的影响. 河北农业科学, 2016, 20(2):34-39.
[31] 冯瑞章, 姚拓, 周万海, 等. 溶磷菌对燕麦生物量及植株氮、磷含量的影响. 水土保持学报, 2009, 23(2):188-192.
[32] 余旋, 朱天辉, 刘旭, 等. 不同解磷菌剂对美国山核桃苗生长、光合特性及磷素营养的影响. 果树学报, 2010, 27(5):725-729.
[33] 徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2):140-146.
doi: 10.11686/cyxb20140217
[34] 王明达. 秸秆还田方式与化肥配施对玉米生长及土壤养分的影响. 沈阳:沈阳农业大学, 2017.
[35] 董祥洲, 陈亚奎, 任立伟, 等. 微生物转化在秸秆还田中的应用进展. 生物加工过程, 2020, 18(5):604-611.
[36] 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7):105-114.
[37] 赵小蓉, 周然, 李贵桐, 等. 低磷石灰性土壤加入四种作物秸秆土壤微生物量磷的变化特征. 华北农学报, 2010, 25(3):200-204.
[38] 徐强. 不同时期缺磷、供磷对小麦产量形成和器官建成的影响. 山东农业科学, 1987(2):14-18.
[39] Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein1. Crop Science, 1985, 25(3):430-431.
doi: 10.2135/cropsci1985.0011183X002500030002x
[40] Maarastawi S A, Frindte K, Bodelier P, et al. Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption. Soil Biology and Biochemistry, 2019, 135:235-238.
doi: 10.1016/j.soilbio.2019.05.007
[41] 黄新灿, 章明奎. 蔬菜种植模式对涂地土壤性状及蔬菜连作障碍的影响. 中国农学通报, 2016, 32(22):151-157.
doi: 10.11924/j.issn.1000-6850.casb15120035
[42] 郜春花, 卢朝东, 张强. 解磷菌剂对作物生长和土壤磷素的影响. 水土保持学报, 2006, 20(4):54-56.
[1] 张蓉, 陈晓文, 路平, 尤艳蓉, 周德录, 李德明. 不同覆盖模式对旱地马铃薯土壤水热变化和产量的影响[J]. 作物杂志, 2023, (5): 145–150
[2] 刘红杰, 任德超, 倪永静, 葛君, 张素瑜, 吕国华, 胡新. 秸秆还田下减氮对土壤养分、酶活性和冬小麦产量的影响[J]. 作物杂志, 2023, (4): 210–214
[3] 陈媛媛, 李光胜, 刘洋, 何毓琦, 周美亮, 方正武. 苦荞抗立枯病基因FtTIR的克隆及功能鉴定[J]. 作物杂志, 2023, (4): 44–51
[4] 白凯红, 阿别小兵, 许晓丽, 蒋娜, 李健强, 罗来鑫. 四川凉山苦荞种子携带真菌多样性分析[J]. 作物杂志, 2023, (3): 260–266
[5] 李光胜, 卢翔, 赖弟利, 张凯旋, 王海华, 周美亮. 苦荞抗立枯病基因FtABCG12的克隆及其功能分析[J]. 作物杂志, 2023, (3): 43–50
[6] 卫云飞, 李猛, 季新, 刘娟, 王付娟, 刘秋员. 不同耕播方式对秸秆全量还田下麦茬直播稻生长和产量的影响[J]. 作物杂志, 2023, (3): 94–100
[7] 付梓平, 范昱, 赖弟利, 张凯旋, 朱剑锋, 李基光, 周美亮, 王俊珍. 脱支和反复湿热处理对苦荞抗性淀粉含量和理化特性的影响[J]. 作物杂志, 2023, (1): 52–57
[8] 王政, 徐天养, 刘久羽, 彭博, 徐茂华, 李博, 敖金成, 龙伟. 云南红壤坡耕地秸秆配施复合菌剂的应用效应研究[J]. 作物杂志, 2023, (1): 89–95
[9] 秦猛, 崔士泽, 何孝东, 翟玲侠, 陶博, 王召君, 赵海成, 李红宇, 郑桂萍, 刘丽华. 秸秆膨化还田对水稻产量、品质及土壤养分的影响[J]. 作物杂志, 2022, (6): 159–166
[10] 张明发, 张胜, 滕凯, 陈前锋, 田明慧, 江智敏, 巢进, 菅攀锋, 邓小华. 湖南花垣烟区秸秆生物炭配施量对土壤pH及烤烟根系的影响[J]. 作物杂志, 2022, (6): 193–200
[11] 王俊珍, 周美亮, 李发良, 张凯旋, 朱剑锋, 沈阿衣, 洛古有夫, 姚聚红, 殷远杰, 伍东明, 张杰. 苦荞新品种“川荞6号”的选育及栽培技术[J]. 作物杂志, 2022, (6): 241–244
[12] 唐江华, 杜孝敬, 徐文修, 苏丽丽, 房彦飞, 许潮, 安崇霄. 秸秆全量还田下土壤氮素特征对耕作措施的响应[J]. 作物杂志, 2022, (5): 135–140
[13] 葛昌斌, 秦素研, 黄杰, 曹燕燕, 廖平安. 耕作方式对小麦赤霉病和产量的影响[J]. 作物杂志, 2022, (5): 235–240
[14] 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149–154
[15] 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 73–79
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!