作物杂志,2024, 第1期: 204213 doi: 10.16035/j.issn.1001-7283.2024.01.027
郝亚妮1(), 裴红宾2,3(), 高振峰4, 张轶珺3, 杨珍平1
Hao Yani1(), Pei Hongbin2,3(), Gao Zhenfeng4, Zhang Yijun3, Yang Zhenping1
摘要:
为实现苦荞节磷栽培,采用盆栽试验,以苦荞品种晋荞6号为试验材料,设置秸秆[0g/kg土壤(J0)、4g/kg土壤(J1)]和有机磷降解菌Bacillus vallismortis gz4-1的菌液浓度[0(P0)、104(P1)、106(P2)、108(P3)、1010 (P4) cfu/mL]两因素复合处理,以正常施肥为对照(CK),研究了有机磷降解菌B.vallismortis gz4-1与秸秆配施对苦荞生长及产量和品质的影响。结果表明,与不施秸秆相比,解磷菌―秸秆复合处理可显著提高苦荞根系质量、主根长、总根长和产量,且随着菌液浓度的增加表现为先升高后降低的趋势;解磷菌―秸秆复合处理以菌液浓度P2和P3效果较优,且在P2浓度下苦荞根系表面积、根系体积、茎粗、根系活力、酸性磷酸酶活性和果穗数达到最优生长值,但在P3浓度下苦荞根系鲜重和干重、主根长、总根长、株高、茎叶鲜重和干重、叶面积、单株粒重、千粒重、产量和黄酮含量达到最优生长值。另外,同CK相比,解磷菌协同秸秆替代磷肥在P2、P3解磷菌浓度时还可促进苦荞生产并显著提高产量。因此,推荐解磷菌―秸秆复合处理时的解磷菌较优接种浓度为106~108 cfu/mL。
[1] |
Ogbo F C. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology, 2010, 101(11):4120-4124.
doi: 10.1016/j.biortech.2009.12.057 pmid: 20138509 |
[2] | Gyaneshwar P, Kumar G N, Parekh L J, et al. Role of soil microorganisms in improving P nutrition of plants. System Sciences and Comprehensive Studies in Agriculture, 2002, 245 (1):133-143. |
[3] | 徐凤花, 刘永春. 秸杆还田的增磷作用及对植株全磷含量干物质积累的影响. 黑龙江八一农垦大学学报, 1997(3):1-5. |
[4] | Mohammadi G. Phosphate biofertilizers as renewable and safe nutrient suppliers for cropping systems: A Review// Kumar V,Kumar M,Sharma S,et al. Probiotics and Plant Health. Springer Singapore, 2017:113-130. |
[5] | Raghuwanshi R. Opportunities and challenges to sustainable agriculture in India. NEBIO, 2012, 3:78-86. |
[6] |
Khan K S, Joergensen R G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technology, 2009, 100(1):303-309.
doi: 10.1016/j.biortech.2008.06.002 pmid: 18632264 |
[7] | Natalie B, Widyasmara A, Arifin M, et al. Isolation and screening of phosphate solubilizing bacteria from rhizosphere of tea (Camellia sinensis L.) on andisols. International Journal, 2017, 4(4):95-100. |
[8] |
Yu X, Liu X, Zhu T H, et al. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils, 2011, 47(4):437-446.
doi: 10.1007/s00374-011-0548-2 |
[9] |
Ghosh U, Subhashini P, Dilipan E, et al. Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil. Journal of Ocean University of China, 2012, 11(1):86-92.
doi: 10.1007/s11802-012-1844-7 |
[10] |
Hansen V, Bonnichsen L, Nunes I, et al. Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 2020, 56(1):97-109.
doi: 10.1007/s00374-019-01401-7 |
[11] |
Ahmad D A, Bhat A K. Genotypic characterization and efficacy of phosphate solubilising bacteria in improving the crop yield of Zea mays. Forests, 2019, 14:34-39.
doi: 10.3390/f14010034 |
[12] | Prasad M, Dawson J, Yadav R S. Effect of different nitrogen sources and phosphate solubilizing bacteria on growth and yield of grain cowpea [Vigna unguiculata (L.) Walp.]. Crop Research, 2012, 44(1/2):59-62. |
[13] | Yan H L, Liu C Y, Zhao J L, et al. Genome-wide analysis of the NF-Y gene family and their roles in relation to fruit development in Tartary buckwheat (Fagopyrum tataricum). International Journal of Biological Macromolecules, 2021, 1(190):487-498. |
[14] |
Liu C, Ye X, Zou L, et al. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development-ScienceDirect. International Journal of Biological Macromolecules, 2021, 171:435-447.
doi: 10.1016/j.ijbiomac.2021.01.016 pmid: 33434548 |
[15] | 张志良, 瞿伟菁, 李小方. 植物生理学实验指导(第4版). 北京: 高等教育出版社, 2009. |
[16] | 孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究. 应用生态学报, 2002, 13(3):379-381. |
[17] | 刘三才, 李为喜, 刘方, 等. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价. 植物遗传资源学报, 2007, 8(3):317-320. |
[18] | 张琪, 刘慧灵, 朱瑞, 等. 苦荞麦中总黄酮和芦丁的含量测定方法的研究. 食品科学, 2003, 24(7):113-116. |
[19] | 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. |
[20] | 刘新亮, 李彦, 戴小英, 等. 配方施肥对芳樟幼林生长及叶精油含量的影响. 南方林业科学, 2019, 47(6):7-10,63. |
[21] | Singh G T, Erik N N. Rhizosphere research:a tool for treating phosphorus efficient crop varieties. WCSS, 2002, 1270(64):1-15. |
[22] |
Zhu J, Zhang C, Lynch J P. The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology, 2010, 37(4):313-322.
doi: 10.1071/FP09197 |
[23] |
Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002, 29:751-760.
doi: 10.1046/j.1365-313X.2002.01251.x |
[24] | Misson J, Raghothama K, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11934-11939. |
[25] |
Schachtman D P, Shin R. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology, 2007, 58(1):47-69.
doi: 10.1146/arplant.2007.58.issue-1 |
[26] | 杨春婷, 张永清, 董璐, 等. 不同基因型苦荞幼苗对低磷胁迫的响应. 植物科学学报, 2018, 36(6):859-867. |
[27] |
Nadira U A, Ahmed I M, Zeng J, et al. The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60(6):832-842.
doi: 10.1080/00380768.2014.949853 |
[28] |
Gaume A, Machler F, León C D, et al. Low-P tolerance by maize (Zea mays L.) genotypes:Significance of root growth and organic acids and acid phosphatase root exudation. Plant Soil, 2001, 228:253-264.
doi: 10.1023/A:1004824019289 |
[29] | 李娟, 王文丽, 卢秉林. 解磷微生物菌剂对油菜生长及产量的影响. 中国土壤与肥料, 2010(3):67-69. |
[30] | 吕丽华, 姚海坡, 申海平, 等. 不同肥料种类对小麦产量和土壤肥力的影响. 河北农业科学, 2016, 20(2):34-39. |
[31] | 冯瑞章, 姚拓, 周万海, 等. 溶磷菌对燕麦生物量及植株氮、磷含量的影响. 水土保持学报, 2009, 23(2):188-192. |
[32] | 余旋, 朱天辉, 刘旭, 等. 不同解磷菌剂对美国山核桃苗生长、光合特性及磷素营养的影响. 果树学报, 2010, 27(5):725-729. |
[33] |
徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2):140-146.
doi: 10.11686/cyxb20140217 |
[34] | 王明达. 秸秆还田方式与化肥配施对玉米生长及土壤养分的影响. 沈阳:沈阳农业大学, 2017. |
[35] | 董祥洲, 陈亚奎, 任立伟, 等. 微生物转化在秸秆还田中的应用进展. 生物加工过程, 2020, 18(5):604-611. |
[36] | 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7):105-114. |
[37] | 赵小蓉, 周然, 李贵桐, 等. 低磷石灰性土壤加入四种作物秸秆土壤微生物量磷的变化特征. 华北农学报, 2010, 25(3):200-204. |
[38] | 徐强. 不同时期缺磷、供磷对小麦产量形成和器官建成的影响. 山东农业科学, 1987(2):14-18. |
[39] |
Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein1. Crop Science, 1985, 25(3):430-431.
doi: 10.2135/cropsci1985.0011183X002500030002x |
[40] |
Maarastawi S A, Frindte K, Bodelier P, et al. Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption. Soil Biology and Biochemistry, 2019, 135:235-238.
doi: 10.1016/j.soilbio.2019.05.007 |
[41] |
黄新灿, 章明奎. 蔬菜种植模式对涂地土壤性状及蔬菜连作障碍的影响. 中国农学通报, 2016, 32(22):151-157.
doi: 10.11924/j.issn.1000-6850.casb15120035 |
[42] | 郜春花, 卢朝东, 张强. 解磷菌剂对作物生长和土壤磷素的影响. 水土保持学报, 2006, 20(4):54-56. |
[1] | 张蓉, 陈晓文, 路平, 尤艳蓉, 周德录, 李德明. 不同覆盖模式对旱地马铃薯土壤水热变化和产量的影响[J]. 作物杂志, 2023, (5): 145150 |
[2] | 刘红杰, 任德超, 倪永静, 葛君, 张素瑜, 吕国华, 胡新. 秸秆还田下减氮对土壤养分、酶活性和冬小麦产量的影响[J]. 作物杂志, 2023, (4): 210214 |
[3] | 陈媛媛, 李光胜, 刘洋, 何毓琦, 周美亮, 方正武. 苦荞抗立枯病基因FtTIR的克隆及功能鉴定[J]. 作物杂志, 2023, (4): 4451 |
[4] | 白凯红, 阿别小兵, 许晓丽, 蒋娜, 李健强, 罗来鑫. 四川凉山苦荞种子携带真菌多样性分析[J]. 作物杂志, 2023, (3): 260266 |
[5] | 李光胜, 卢翔, 赖弟利, 张凯旋, 王海华, 周美亮. 苦荞抗立枯病基因FtABCG12的克隆及其功能分析[J]. 作物杂志, 2023, (3): 4350 |
[6] | 卫云飞, 李猛, 季新, 刘娟, 王付娟, 刘秋员. 不同耕播方式对秸秆全量还田下麦茬直播稻生长和产量的影响[J]. 作物杂志, 2023, (3): 94100 |
[7] | 付梓平, 范昱, 赖弟利, 张凯旋, 朱剑锋, 李基光, 周美亮, 王俊珍. 脱支和反复湿热处理对苦荞抗性淀粉含量和理化特性的影响[J]. 作物杂志, 2023, (1): 5257 |
[8] | 王政, 徐天养, 刘久羽, 彭博, 徐茂华, 李博, 敖金成, 龙伟. 云南红壤坡耕地秸秆配施复合菌剂的应用效应研究[J]. 作物杂志, 2023, (1): 8995 |
[9] | 秦猛, 崔士泽, 何孝东, 翟玲侠, 陶博, 王召君, 赵海成, 李红宇, 郑桂萍, 刘丽华. 秸秆膨化还田对水稻产量、品质及土壤养分的影响[J]. 作物杂志, 2022, (6): 159166 |
[10] | 张明发, 张胜, 滕凯, 陈前锋, 田明慧, 江智敏, 巢进, 菅攀锋, 邓小华. 湖南花垣烟区秸秆生物炭配施量对土壤pH及烤烟根系的影响[J]. 作物杂志, 2022, (6): 193200 |
[11] | 王俊珍, 周美亮, 李发良, 张凯旋, 朱剑锋, 沈阿衣, 洛古有夫, 姚聚红, 殷远杰, 伍东明, 张杰. 苦荞新品种“川荞6号”的选育及栽培技术[J]. 作物杂志, 2022, (6): 241244 |
[12] | 唐江华, 杜孝敬, 徐文修, 苏丽丽, 房彦飞, 许潮, 安崇霄. 秸秆全量还田下土壤氮素特征对耕作措施的响应[J]. 作物杂志, 2022, (5): 135140 |
[13] | 葛昌斌, 秦素研, 黄杰, 曹燕燕, 廖平安. 耕作方式对小麦赤霉病和产量的影响[J]. 作物杂志, 2022, (5): 235240 |
[14] | 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149154 |
[15] | 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 7379 |
|