作物杂志,2023, 第4期: 44–51 doi: 10.16035/j.issn.1001-7283.2023.04.007

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

苦荞抗立枯病基因FtTIR的克隆及功能鉴定

陈媛媛1,2(), 李光胜2,3, 刘洋2,4, 何毓琦2, 周美亮2(), 方正武1   

  1. 1长江大学农学院,434025,湖北荆州
    2中国农业科学院作物科学研究所,100081,北京
    3湖南科技大学生命科学与健康学院,411201,湖南湘潭
    4西南大学农学与生物科技学院,400700,重庆
  • 收稿日期:2022-07-21 修回日期:2022-09-15 出版日期:2023-08-15 发布日期:2023-08-15
  • 通讯作者: 正武,从事作物遗传育种研究,E-mail:fangzhengwu88@163.com;周美亮为共同通信作者,研究方向为荞麦种质资源与品质抗逆机制解析,E-mail:zhoumeiliang@caas.cn
  • 作者简介:陈媛媛,研究方向为荞麦遗传育种与品种改良,E-mail:461980621@qq.com
  • 基金资助:
    国家重点研发计划(2019YFD1001300);国家重点研发计划(2019YFD1001303)

Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight

Chen Yuanyuan1,2(), Li Guangsheng2,3, Liu Yang2,4, He Yuqi2, Zhou Meiliang2(), Fang Zhengwu1   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Life Science and Health, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    4College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
  • Received:2022-07-21 Revised:2022-09-15 Online:2023-08-15 Published:2023-08-15

摘要:

以苦荞“品苦1号”为材料,克隆得到FtTIR基因,研究其在立枯丝核菌侵染下的表达模式及在立枯病抗病信号通路中的作用。结果表明,FtTIR基因全长576bp,编码191个氨基酸,编码蛋白分子量为22.7kDa。进化分析显示,FtTIR蛋白与藜麦XP_021726625.1和赤豆XP_047164412.1亲缘关系较近。qRT-PCR结果表明,FtTIR基因受立枯丝核菌侵染诱导表达,且在茎中的表达量最高。转基因拟南芥中,过表达FtTIR基因显著提高了植株对立枯丝核菌的抗病性,并显著提高了叶片过氧化物酶和超氧化物歧化酶活性,提高了病程相关基因AtPR1的表达水平。

关键词: 苦荞, FtTIR, 过表达, 抗立枯病

Abstract:

Using tartary buckwheat “Pinku-1” as material, the FtTIR gene was cloned and studied for its expression pattern during the infection of Rhizoctonia solani and its role in the resistance signaling pathway against the disease. The results showed that the full length of the FtTIR gene was 576bp, encoding 191 amino acids, and the protein molecular weight was 22.7kDa. Evolutionary analysis showed that the FtTIR protein was closely related to Chenopodium quinoa XP_021726625.1 and Vigna angularis XP_047164412.1. qRT-PCR results showed that the FtTIR gene was induced by R.solani infection and the expression level was the highest in stems. In transgenic Arabidopsis, the overexpression of FtTIR gene significantly improved plant resistance to R.solani and increased the activities of peroxidase and superoxide dismutase in leaves, as well as the expression level of the disease-related gene AtPR1.

Key words: Tartary buckwheat, FtTIR, Overexpression, Resistance to blight

表1

引物序列汇总

引物Primer 引物序列(5′-3′)Primer sequence (5′-3′) 用途Function
FtTIR-F ATGCAACGTCCAGTAGCCAAA 基因克隆
FtTIR-R TTATTTGCTGTTTTCTTCAACCTCG
FtTIR-qPCR-F GCCTTCTTGCTAATGGG qRT-PCR
FtTIR-qPCR-R GCTTACAACAACACCTCC
AtPR1-qPCR-F TCATGGCTAAGTTTGCTTCC
AtPR1-qPCR-R AATACACACGATTTAGCACC
FtH3-qPCR-F GAAATTCGCAAGTACCAGAAGAG qRT-PCR内参基因
FtH3-qPCR-R CCAACAAGGTATGCCTCAGC
Atactin7-qPCR-F TCCATGAAACAACTTACAACTCCATCA
Atactin7-qPCR-R CATCGTACTCACTCTTTGAAATCCACA
121-FtTIR-F GAGAACACGGGGGACTCTAGAATGCAACGTCCAGTAGCCAAA 构建过表达载体
121-FtTIR-R CATACCTCCTCCTCCGGATCCTTTGCTGTTTTCTTCAACCTCG
121F TGACGTAAGGGATGACGCAC pBI121通用引物

图1

苦荞FtTIR基因序列扩增 M:DL2000;1:FtTIR基因的PCR扩增目的条带

图2

FtTIR基因的生物信息学分析 (a) FtTIR与其他植物TIR蛋白的多重比对;(b) FtTIR蛋白二级结构预测:α-螺旋(蓝色)、延伸链(红色)、β-转角结构(绿色)、无规则卷曲(紫色);(c) FtTIR蛋白三级结构预测;(d) FtTIR蛋白系统进化树分析

图3

立枯丝核菌侵染下FtTIR基因在苦荞不同器官中的表达模式 “*”表示在0.05水平下有显著性差异,下同

图4

转基因拟南芥的抗病性表型验证 对照:不作处理;WT:野生型拟南芥;FtTIR-OE:FtTIR过表达拟南芥。下同

图5

转基因拟南芥的抗病性DAB染色验证

图6

转基因拟南芥中的表达模式分析 WT:野生型叶片未处理;WT-RS:野生型叶片受立枯丝核菌侵染;OE:FtTIR过表达拟南芥叶片未处理;OE-RS:FtTIR过表达拟南芥叶片受立枯丝核菌侵染。下同

图7

转基因拟南芥生理生化指标分析

[1] 闫佳, 刘雅琼, 侯岁稳. 植物抗病蛋白研究进展. 植物学报, 2018, 53(2):250-263.
doi: 10.11983/CBB17148
[2] 高玉霞. 植物病原与抗病基因的进化研究. 南京:南京师范大学, 2018.
[3] 许凤, 杨秀梅, 张丽芳, 等. 观赏植物抗病育种研究进展. 江苏农业科学, 2021, 49(7):44-51.
[4] 尹玲, 方辉, 黄羽, 等. 植物TIR-NB-LRR类型抗病基因各结构域的研究进展. 广西植物, 2017, 37(2):186-190.
[5] Van G C, Esmenjaud D. TNL genes in peach: insights into the post-LRR domain. BMC Genomics, 2016, 30(17):317.
[6] 董亚萍, 杨仕梅, 赵德刚, 等. 烟草TIR-NBS基因家族的生物信息学分析. 广西植物, 2020, 40(6):891-900.
[7] 柴亚茹, 丁一娟, 周思钰, 等. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定. 中国农业科学, 2020, 53(4):761-770.
doi: 10.3864/j.issn.0578-1752.2020.04.008
[8] Bernoux M, Burdett H, Williams S J, et al. Comparative analysis of the flax immune receptors L6 and L 7 suggests an equilibrium-based switch activation model. The Plant Cell, 2016, 28(1):146-159.
doi: 10.1105/tpc.15.00303 pmid: 26744216
[9] Dinesh-Kumar S P, Tham W H, Baker B J.Structure-function analysis of the tobacco mosaic virus resistance gene N. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14789-14794.
[10] Schreiber K J, Bentham A, Williams S J, et al. Multiple domain associations within the Arabidopsis immune receptor RPP 1 regulate the activation of programmed cell death. PLoS Pathogens, 2016, 12(7):e1005769.
doi: 10.1371/journal.ppat.1005769
[11] Zhang Y, Dorey S, Swiderski M, et al. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. The Plant Journal, 2004, 40(2):213-224.
doi: 10.1111/tpj.2004.40.issue-2
[12] 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订. 植物遗传资源学报, 2019, 20(3):646-653.
doi: 10.13430/j.cnki.jpgr.20181210001
[13] 罗吉. 荞麦立枯病生防菌的筛选鉴定及生防效果初探. 成都:成都大学, 2021.
[14] 齐杨菊, 陈振江, 李振霞, 等. 荞麦病害研究进展. 草业科学, 2020, 37(1):75-86.
[15] 卢文洁, 李春花, 王艳青, 等. 荞麦轮纹病抗性鉴定方法的建立及荞麦抗病种质资源的筛选. 中国农学通报, 2017, 33(12):98-102.
doi: 10.11924/j.issn.1000-6850.casb16120120
[16] Gassmann W, Hinsch M E, Staskawicz B J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. The Plant Journal, 1999, 20(3):265-277.
doi: 10.1046/j.1365-313X.1999.t01-1-00600.x
[17] Subedi S, Dhami N B, Gurung S B, et al. Assessment of disease resistance and high yielding traits of common buckwheat genotypes in subtropical climate of Nepal. SAARC Journal of Agriculture, 2020, 18(1):143-152.
doi: 10.3329/sja.v18i1.48388
[18] 徐琴琴, 陈卫良, 毛碧增. 立枯丝核菌毒素的研究进展. 核农学报, 2020, 34(10):2219-2225.
doi: 10.11869/j.issn.100-8551.2020.10.2219
[19] Ade J, DeYoung B J, Golstein C, et al. Indirect activation of a plant nucleotide binding site: leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7):2531-2536.
[20] Michael W L, Swiderski M R, Li Y, et al. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. The Plant Journal, 2006, 47(6):829-840.
doi: 10.1111/tpj.2006.47.issue-6
[21] Bernoux M, Ve T, Williams S, et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host & Microbe, 2011, 9(3):200-211.
[22] 尹秀娟, 涂怡, 刘昱. TLR与PI3K-Akt通路交互调控的研究进展. 生物化工, 2022, 8(2):124-130.
[23] Tao Y, Yuan F, Leister R T, et al. Mutational analysis of the Arabidopsis nucleotide binding site: leucine-rich repeat resistance gene RPS2. The Plant Cell, 2000, 12(12):2541-2554.
[24] Kawchuk L M, Martin R R, Mcpherson J. Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Molecular Plant-Microbe Interactions, 1990, 3(5):301-307.
doi: 10.1094/MPMI-3-301
[25] Hwang C F, Bhakta A V, Truesdell G M, et al. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell, 2000, 12(8):1319-1329.
doi: 10.1105/tpc.12.8.1319
[1] 白凯红, 阿别小兵, 许晓丽, 蒋娜, 李健强, 罗来鑫. 四川凉山苦荞种子携带真菌多样性分析[J]. 作物杂志, 2023, (3): 260–266
[2] 李光胜, 卢翔, 赖弟利, 张凯旋, 王海华, 周美亮. 苦荞抗立枯病基因FtABCG12的克隆及其功能分析[J]. 作物杂志, 2023, (3): 43–50
[3] 付梓平, 范昱, 赖弟利, 张凯旋, 朱剑锋, 李基光, 周美亮, 王俊珍. 脱支和反复湿热处理对苦荞抗性淀粉含量和理化特性的影响[J]. 作物杂志, 2023, (1): 52–57
[4] 王俊珍, 周美亮, 李发良, 张凯旋, 朱剑锋, 沈阿衣, 洛古有夫, 姚聚红, 殷远杰, 伍东明, 张杰. 苦荞新品种“川荞6号”的选育及栽培技术[J]. 作物杂志, 2022, (6): 241–244
[5] 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149–154
[6] 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 73–79
[7] 尹桂芳, 段迎, 杨晓琳, 蔡苏云, 王艳青, 卢文洁, 孙道旺, 贺润丽, 王莉花. 苦荞FtC4H基因克隆与生物信息学分析[J]. 作物杂志, 2022, (1): 77–83
[8] 翁文凤, 伍小方, 张凯旋, 唐宇, 江燕, 阮景军, 周美亮. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性[J]. 作物杂志, 2021, (4): 1–9
[9] 贾瑞玲, 赵小琴, 南铭, 陈富, 刘彦明, 魏立平, 刘军秀, 马宁. 64份苦荞种质资源农艺性状遗传多样性分析与综合评价[J]. 作物杂志, 2021, (3): 19–27
[10] 靳建刚, 田再芳. 山西北部地区引种苦荞品种的灰色关联度分析[J]. 作物杂志, 2021, (2): 52–56
[11] 马名川, 刘龙龙, 刘璋, 周建萍, 南成虎, 张丽君. 苦荞全基因组SSR位点特征分析与分子标记开发[J]. 作物杂志, 2021, (1): 38–46
[12] 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究[J]. 作物杂志, 2020, (5): 33–40
[13] 杨学乐, 张璐, 李志清, 何录秋. 苦荞种质资源表型性状的遗传多样性分析[J]. 作物杂志, 2020, (5): 53–58
[14] 李春花, 黄金亮, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王春龙, 郭来春, 洪波, 任长忠, 王莉花. 苦荞粒形相关性状的遗传分析[J]. 作物杂志, 2020, (3): 42–46
[15] 马成瑞,向达兵,万燕,欧阳建勇,宋月,唐正松,刘建英,赵钢. 不同苦荞品种花和籽粒空间分布特征及差异分析[J]. 作物杂志, 2020, (1): 35–40
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!