作物杂志,2024, 第1期: 8089 doi: 10.16035/j.issn.1001-7283.2024.01.011
所属专题: 玉米专题
毋莹1,2(), 胡蝶1,2, 李婷1,2, 段乾元1, 韦宁宁1,2, 张兴华1,2, 徐淑兔1,2, 薛吉全1,2()
Wu Ying1,2(), Hu Die1,2, Li Ting1,2, Duan Qianyuan1, Wei Ningning1,2, Zhang Xinghua1,2, Xu Shutu1,2, Xue Jiquan1,2()
摘要:
利用生物信息学方法鉴定了玉米WRKY IIc亚族成员,系统全面地分析其理化性质、染色体定位、基因结构、蛋白保守结构域和启动子顺式作用元件;利用已发表的RNA-seq数据,分析ZmWRKY IIc亚家族基因在不同组织部位和不同生长发育时期干旱处理下的表达;同时预测IIc亚家族ZmWRKY蛋白质的互作网络。结果表明,玉米WRKY IIc亚家族有25个成员,其进化相对保守,可在玉米不同组织和不同生长发育时期参与干旱胁迫响应,并且可能在响应干旱胁迫的过程中与MYB、bHLH转录因子以及生长素调节因子存在一定的互作。
[1] | 刘亮, 陈美娟, 范婷婷. 农业气象灾害对玉米产量的影响. 新农业, 2022(6):10-11. |
[2] | 孙琦. 我国不同年代主推玉米品种耐旱抗病性的变化趋势. 北京: 中国农业科学院, 2012. |
[3] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 |
[4] |
Tran L, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16(9):2481-2498.
doi: 10.1105/tpc.104.022699 |
[5] |
Leng P F, Zhao J. Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 2020, 133(3):1455-1465.
doi: 10.1007/s00122-019-03494-y |
[6] |
Cai R H, Zhao Y, Wang Y F, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue and Organ Culture, 2015, 119(3):565-577.
doi: 10.1007/s11240-014-0556-7 |
[7] |
Mao H D, Yu L J, Han R, et al. ZmNAC55,a maize stress- responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 105:55-66.
doi: 10.1016/j.plaphy.2016.04.018 |
[8] |
Ma H Z, Liu C, Li Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology, 2018, 178(2):753-770.
doi: 10.1104/pp.18.00436 |
[9] |
Mangelsen E, Kilian J, Berendzen K W, et al. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 9(1):1-17.
doi: 10.1186/1471-2164-9-1 |
[10] |
Hu W J, Ren Q Y, Chen Y L, et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biology, 2021, 21(1):1-21.
doi: 10.1186/s12870-020-02777-7 |
[11] | Yang Z, Chi X Y, Guo F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress- responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 2020, 153142:246-247. |
[12] |
Ren X Z, Chen Z Z, Liu Y, et al. ABO3,a WRKY transcription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal, 2010, 63(3):417-429.
doi: 10.1111/tpj.2010.63.issue-3 |
[13] | 徐金鹏, 祁亚男, 于延冲. 盐、干旱胁迫对拟南芥WRKY71基因突变体种子萌发的影响. 山东农业科学, 2020, 52(3):34-37. |
[14] |
Wu H L, Ni Z F, Yao Y Y, et al. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Progress in Natural Science, 2008, 18(6):697-705.
doi: 10.1016/j.pnsc.2007.12.006 |
[15] | 郭玉敏, 张云华. 玉米ZmWRKY53基因克隆及诱导表达分析. 分子植物育种, 2020, 18(3):719-728. |
[16] | 郭玉敏, 张云华, 井涛, 等. 过表达玉米转录因子ZmWRKY101基因提高拟南芥植株的耐盐力. 植物生理学报, 2020, 25(9):1921-1932. |
[17] | Alzohairy A M. BioEdit: an important software for molecular biology. Gerf Bulletin of Biosciences, 2011, 2(1):60-61. |
[18] |
Hall B G. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 2013, 30(5):1229-1235.
doi: 10.1093/molbev/mst012 pmid: 23486614 |
[19] |
Chen C J, Chen H, Zhang Y, et al. Tbtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[20] | Jensen L J, Michael K, Manuel S, et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 2009, 37(1):412-416. |
[21] | Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1):361-362. |
[22] |
Miao Z Y, Han Z X, Zhang T, et al. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7(1):6590.
doi: 10.1038/s41598-017-06929-y pmid: 28747711 |
[23] |
Liu Y, Zhou M Y, Gao Z X, et al. RNA-Seq analysis reveals MAPKKK family members related to drought tolerance in maize. PLoS ONE, 2015, 10(11):e0143128.
doi: 10.1371/journal.pone.0143128 |
[24] |
Yang M, Geng M Y, Shen P F, et al. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiology and Biochemistry, 2019, 135:304-309.
doi: 10.1016/j.plaphy.2018.12.025 |
[25] |
Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2021, 23(2):104-119.
doi: 10.1038/s41576-021-00413-0 pmid: 34561623 |
[26] |
Qiu Y P, Yu D Q. Overexpression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009, 65 (1):35-47.
doi: 10.1016/j.envexpbot.2008.07.002 |
[27] |
Wang C T, Ru J N, Liu Y W, et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences, 2018, 19(10):3046.
doi: 10.3390/ijms19103046 |
[28] | 李建萍.玉米转录因子ZmWRKY25的克隆及其抗逆功能分析. 长春:吉林大学, 2012. |
[29] |
Jiang Y J, Gang L, Yu D Q. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012, 5(6):1375-1388.
doi: 10.1093/mp/sss080 |
[30] | 蔡荣号.玉米WRKY转录因子IId亚族抗逆相关基因的鉴定及ZmWRKY17的功能分析. 合肥:安徽农业大学, 2016. |
[31] |
Zhang T, Tan D F, Zhang L, et al. Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize. Agri Gene, 2017, 3:99-108.
doi: 10.1016/j.aggene.2017.01.001 |
[32] |
Alan L, Austen B, Lyndsey A, et al. Advances in the MYB- bHLH-WD Repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology, 2017, 58(9):1431-1441.
doi: 10.1093/pcp/pcx075 |
[33] |
Amato A, Cavallini E, Walker A R, et al. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal, 2019, 99(6):1220-1241.
doi: 10.1111/tpj.14419 pmid: 31125454 |
[34] |
Zhao M Z, Morohashi K, Hatlestad G, et al. The TTG1-bHLH- MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135(11):1991-1999.
doi: 10.1242/dev.016873 |
[35] |
Verweij W, Spelt C E, Bliek M, et al. Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis. The Plant Cell, 2016, 28(3):786-803.
doi: 10.1105/tpc.15.00608 pmid: 26977085 |
[1] | 冯勇, 侯旭光, 薛春雷, 张来厚, 宋国栋, 苏敏莉, 傅晓华, 孙宇燕. 内蒙古玉米品种适宜生态区划分[J]. 作物杂志, 2024, (1): 2330 |
[2] | 王海涛, 任春梅, 董岩, 李硕, 程兆榜, 季英华. 江苏淮安市高粱上玉米黄花叶病毒的分子检测与鉴定[J]. 作物杂志, 2024, (1): 233238 |
[3] | 马娟, 黄璐, 宇婷, 郭国俊, 朱卫红, 刘京宝. 玉米穗粗一般配合力多位点全基因组关联分析和基因组预测[J]. 作物杂志, 2024, (1): 3139 |
[4] | 金玉, 郭新宇, 张颖, 李大壮, 王璟璐. 玉米叶片气孔表型鉴定及研究进展[J]. 作物杂志, 2023, (6): 110 |
[5] | 吴琦, 明博, 高尚, 杨宏业, 张川, 初振东, 李少昆. 东北冷凉区玉米籽粒脱水模型构建策略研究[J]. 作物杂志, 2023, (6): 108113 |
[6] | 刘希伟, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 小麦生育中后期干旱高温对籽粒产量形成过程的影响机制及缓解措施[J]. 作物杂志, 2023, (6): 1725 |
[7] | 梁忠宇, 薛军, 张国强, 明博, 沈东萍, 方梁, 周林立, 张玉芹, 杨恒山, 王克如, 李少昆. 水肥一体化施磷量对玉米抗倒伏能力的影响[J]. 作物杂志, 2023, (6): 190194 |
[8] | 曹庆军, 李刚, 杨浩, 娄玉勇, 杨粉团, 孔凡丽, 李辛琲, 赵新凯, 姜晓莉. 不同耕作方式对春玉米种床质量的影响及其与幼苗群体建成和产量的关系[J]. 作物杂志, 2023, (5): 249254 |
[9] | 于乐, 李林, 黄红娟, 黄兆峰, 朱文达, 魏守辉. 湖北省玉米田杂草种类组成及群落特征[J]. 作物杂志, 2023, (5): 272279 |
[10] | 杨宗莹, 肖贵, 张红伟. 利用玉米F1群体进行玉米全株鲜重的全基因组预测分析[J]. 作物杂志, 2023, (5): 4348 |
[11] | 曲海涛, 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 谭倬, 王纯, 魏强, 罗瑶, 李光发. 玉米百粒重遗传育种效应研究[J]. 作物杂志, 2023, (5): 6670 |
[12] | 杨密, 王美娟, 许海涛. 不同生态区玉米自交系苞叶动态发育差异性研究[J]. 作物杂志, 2023, (5): 8190 |
[13] | 杨程, 张德奇, 杜思梦, 张丽佳, 靳海洋, 李滢, 邵运辉, 王汉芳, 方保停, 李向东, 刘美君. 黑暗和强光下脱水对小麦离体叶片光系统活性的影响[J]. 作物杂志, 2023, (5): 98103 |
[14] | 袁刘正, 王会强, 王秋岭, 朱世蝶, 赵月强, 袁曼曼, 王会涛, 张运栋, 柳家友, 袁永强. 遮阴条件下玉米自交系配合力与遗传效应分析[J]. 作物杂志, 2023, (4): 104109 |
[15] | 郑飞, 陈静, 崔亚坤, 孔令杰, 孟庆长, 李杰, 刘瑞响, 张美景, 赵文明, 陈艳萍. 淮北不同生态区丰产稳产宜机收玉米新品种筛选[J]. 作物杂志, 2023, (4): 110117 |
|