作物杂志,2024, 第2期: 23–29 doi: 10.16035/j.issn.1001-7283.2024.02.004

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

苦荞FtERF基因克隆、生物信息学及其表达分析

张俊1(), 蔡苏云1, 徐子豪1, 侯蕾1, 贺润丽1(), 尹桂芳2, 王莉花2(), 王艳青2, 卢文洁2, 孙道旺2   

  1. 1山西中医药大学中药与食品工程学院,030619,山西太原
    2云南省农业科学院生物技术与种质资源研究所/云南省农业生物技术重点实验室/农业农村部西南作物基因资源与种质创制重点实验室,650201,云南昆明
  • 收稿日期:2022-12-30 修回日期:2023-04-26 出版日期:2024-04-15 发布日期:2024-04-15
  • 通讯作者: 贺润丽,研究方向为中药资源开发与利用,E-mail:herunli666@163.com;王莉花,研究方向为植物遗传育种,E-mail:wanglihua70@hotmail.com
  • 作者简介:张俊,研究方向为中药资源开发与利用,E-mail:2639854942@qq.com
  • 基金资助:
    国家自然科学基金(31460379);财政部和农业农村部国家现代农业产业技术体系(CARS-07-C-2);山西省重点研发计划(201803D221012-6);山西省自然科学研究面上项目(20210302123231)

Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum

Zhang Jun1(), Cai Suyun1, Xu Zihao1, Hou Lei1, He Runli1(), Yin Guifang2, Wang Lihua2(), Wang Yanqing2, Lu Wenjie2, Sun Daowang2   

  1. 1College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, Shanxi, China
    2Biotechnology and Genetic Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Provincial Key Laboratory of Agricultural Biotechnology / Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming 650201, Yunnan, China
  • Received:2022-12-30 Revised:2023-04-26 Online:2024-04-15 Published:2024-04-15

摘要:

乙烯响应因子对植物发育和细胞代谢具有重要作用。通过RT-PCR从苦荞中克隆出ERF基因,对其进行生物信息学分析和差异表达分析。结果表明,FtERF基因开放阅读框长度为729 bp,编码了243个氨基酸,编码的蛋白分子量26.08 kD,等电点9.22,属于亲水性蛋白。FtERF不含有信号肽和跨膜螺旋结构,亚细胞定位在细胞核内,蛋白质二级结构和三级结构高度相似。FtERF含有抑制基序DLNxxP,系统进化表明FtERFERF4关系较近。经荧光定量表达发现,厚壳苦荞不同部位表达均高于薄壳苦荞,苦荞发育成熟期表达高于非成熟期。

关键词: 苦荞, 乙烯响应因子, 生物信息学, 表达分析

Abstract:

Ethylene response factor plays an important role in plant development and cell metabolism. ERF gene was cloned from Tartary buckwheat by RT-PCR, and its bioinformatics and differential expression were analyzed. The results showed that the length of open reading frame of FtERF gene was 729 bp, encoding 243 amino acids, molecular weight of 26.08 kD, isoelectric point of 9.22, belonging to the hydrophilic protein. FtERF didn't contain signal peptides and transmembrane helical structure, and was located in the nucleus of the cell. The secondary and tertiary structures of the proteins were highly similar. FtERF contained the inhibitory motif DLNxxP, and phylogenetic evolution suggested that FtERF and ERF4 were closely related. The results showed that the expression of Tartary buckwheat in different parts of thick-shell were higher than those in thin-shell Tartary buckwheat, and the expression of Tartary buckwheat in mature period was higher than that in immature period.

Key words: Tartary buckwheat, Ethylene response factor, Bioinformatics, Expression analysis

表1

试验所用引物序列信息

引物名称
Primer name
引物序列
Primer sequence
用途
Usage
FtERF-F ATGGCACCCAAGCATAAGG 基因克隆
FtERF-R GGCGAGATCTGAAGGCGG
FtERF-F GGTTTCACGGCAGGGATT 实时荧光定量PCR
FtERF-R CACGATAGACGATGAGGCAGA
H3-F AAGAAGTCCCACAGATACCGC
H3-R AGCCTCCTGAAGAGCTAGCAC

图1

FtERF基因PCR产物的电泳结果 M:SM0331 DNA分子量标准;1:云荞1号ERF基因片段;2:小米荞ERF基因片段。

图2

FtERF的保守结构域分析

图3

FtERF的疏水性分析

图4

FtERF的跨膜结构域分析

图5

FtERF的肽信号预测

图6

FtERF的磷酸化位点预测

图7

FtERF蛋白质二级结构预测

图8

FtERF蛋白质三级结构预测

图9

FtERF蛋白的多序列比对 蓝框内为EAR结构域抑制基序。

图10

FtERF与其他物种ERF蛋白的系统进化树

图11

FtERF基因在苦荞不同部位和不同发育时期的相对表达水平 “*”和“**”分别表示在0.05和0.01水平差异显著。

[1] 张强, 李艳琴. 基于矿质元素的苦荞产地判别研究. 中国农业科学, 2011, 44(22):4653-4659.
doi: 10.3864/j.issn.0578-1752.2011.22.012
[2] 张强, 李艳琴. 苦荞功能成分及其开发利用. 山西师范大学学报: 自然科学, 2009, 23(4):85-89.
[3] 谭平艳, 郭皖北. 苦荞黄酮的生理功能及其作用机制的研究进展. 医学综述, 2018, 24(8):1627-1632.
[4] 贾冬英, 姚开, 张海均. 苦荞麦的营养与功能成分研究进展. 粮食与饲料工业, 2012, 12(5):25-27.
[5] Liu M, Fu Q, Ma Z, et al. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). Planta, 2019, 249(5):1301-1318.
doi: 10.1007/s00425-019-03089-3 pmid: 30617544
[6] 喻武鹃. 薄壳苦荞种子代谢组学分析与AGL11基因克隆和表达研究. 贵阳: 贵州师范大学, 2020.
[7] Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2):411-432.
doi: 10.1104/pp.105.073783 pmid: 16407444
[8] 张麒, 陈静, 李俐, 等. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8):1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
[9] Zhang J, Yin X R, Li H, et al. Ethylene Response FACTOR39- MYB 8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany, 2020, 71(10):3172-3184.
doi: 10.1093/jxb/eraa085 pmid: 32072171
[10] Hu Y N, Sun Y L, Han Z Y, et al. ERF4 affects fruit firmness through TPL4 by reducing ethylene production. The Plant Journal, 2020, 103(3):937-950.
doi: 10.1111/tpj.14884 pmid: 32564488
[11] Hu Y N, Sun H L, Han Z Y, et al. ERF4 affects fruit ripening by acting as a JAZ interactor between ethylene and jasmonic acid hormone signaling pathways. Horticultural Plant Journal, 2022, 8(6):689-699.
doi: 10.1016/j.hpj.2022.01.002
[12] Ma R F, Xiao Y, Lv Z Y, et al. AP2/ERF transcription factor,Ii049,positively regulates lignan biosynthesis in Isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes. Frontiers in Plant Science, 2017, 8:1361.
doi: 10.3389/fpls.2017.01361
[13] Duan Y, Yin G F, He R L, et al. Identification of candidate genes for easily-shelled traits in Tartary buckwheat based on BSA-Seq and RNA-Seq methods. Euphytica, 2022, 218(7):1-14.
doi: 10.1007/s10681-021-02955-0
[14] Yang Z, Tian L N, Latoszek-Green M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 2005, 58(4):585-596.
doi: 10.1007/s11103-005-7294-5
[15] Fu C C, Han Y C, Qi X Y, et al. Papaya CpERF9 acts as a transcriptional repressor of cell-wall-modifying genes CpPME1/2 and CpPG5 involved in fruit ripening. Plant Cell Reports, 2016, 35(11):2341-2352.
doi: 10.1007/s00299-016-2038-3
[16] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2012, 1819(2):86-96.
doi: 10.1016/j.bbagrm.2011.08.004
[17] 吴朝昕. 薄壳苦荞果壳结构及其发育中的转录组学分析. 贵阳: 贵州师范大学, 2020.
[18] 宋康华, 贾志伟, 常金梅, 等. 低温下乙烯对采后菜薹木质化及相关基因表达的影响. 园艺学报, 2019, 46(4):775-783.
doi: 10.16420/j.issn.0513-353x.2018-0561
[19] Cai C, Chen K S, Xu W P, et al. Effect of 1-MCP on postharvest quality of loquat fruit. Postharvest Biology and Technology, 2006, 40(2):155-162.
doi: 10.1016/j.postharvbio.2005.12.014
[20] Wang P, Zhang B, Li X, et al. Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit. Journal of Experimental Botany, 2010, 61(1):179-190.
doi: 10.1093/jxb/erp302 pmid: 19884229
[21] Wang C H, Xin M, Zhou X Y, et al. The novel ethylene- responsive factor CsERF025 affects the development of fruit bending in cucumber. Plant Molecular Biology, 2017, 95(4):519-531.
doi: 10.1007/s11103-017-0671-z
[22] Zeng J K, Li X, Xu Q, et al. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnology Journal, 2015, 13(9):1325-1334.
doi: 10.1111/pbi.2015.13.issue-9
[1] 杨恩泽, 谢锐, 韩平安, 张永虎, 刘锦川, 牛素清, 温蕊, 王春勇, 金晓蕾. 内蒙古162份苦荞资源表型性状的遗传多样性及综合评价[J]. 作物杂志, 2024, (2): 15–22
[2] 张倩, 任雯, 赵冰兵, 周秒依, 李韩帅, 刘亚, 杜何为. 玉米ZmMAPKKK21基因的克隆和生物信息学分析[J]. 作物杂志, 2024, (2): 30–39
[3] 杜含梅, 谭露, 陈勃, 于秋竹, 吴丹丹, 王安虎. 苦荞苗期镉耐受性综合评价[J]. 作物杂志, 2024, (2): 40–53
[4] 张玉, 杨文静, 刘璇, 聂峰杰, 张丽, 石磊, 张国辉, 郭志乾, 巩檑. 马铃薯细胞壁蔗糖转化酶基因StCWIN1启动子克隆与表达及其在干旱胁迫下的作用分析[J]. 作物杂志, 2024, (2): 54–61
[5] 郝亚妮, 裴红宾, 高振峰, 张轶珺, 杨珍平. 解磷菌协同秸秆替代磷肥对苦荞生长及产量和品质的影响[J]. 作物杂志, 2024, (1): 204–213
[6] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
[7] 毋莹, 胡蝶, 李婷, 段乾元, 韦宁宁, 张兴华, 徐淑兔, 薛吉全. 玉米WRKY转录因子IIc亚家族分析及其在干旱胁迫下的表达分析[J]. 作物杂志, 2024, (1): 80–89
[8] 陈媛媛, 李光胜, 刘洋, 何毓琦, 周美亮, 方正武. 苦荞抗立枯病基因FtTIR的克隆及功能鉴定[J]. 作物杂志, 2023, (4): 44–51
[9] 赵鹏鹏, 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏. 小麦GzCIPK7-5B基因的生物信息学及表达分析[J]. 作物杂志, 2023, (4): 77–84
[10] 邱凯华, 方淑梅, 梁喜龙. 稻瘟病菌类SRRM1转录因子的功能分析[J]. 作物杂志, 2023, (3): 246–253
[11] 白凯红, 阿别小兵, 许晓丽, 蒋娜, 李健强, 罗来鑫. 四川凉山苦荞种子携带真菌多样性分析[J]. 作物杂志, 2023, (3): 260–266
[12] 李光胜, 卢翔, 赖弟利, 张凯旋, 王海华, 周美亮. 苦荞抗立枯病基因FtABCG12的克隆及其功能分析[J]. 作物杂志, 2023, (3): 43–50
[13] 孟亚轩, 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 主要禾谷类作物DGAT基因家族比较分析[J]. 作物杂志, 2023, (1): 20–29
[14] 付梓平, 范昱, 赖弟利, 张凯旋, 朱剑锋, 李基光, 周美亮, 王俊珍. 脱支和反复湿热处理对苦荞抗性淀粉含量和理化特性的影响[J]. 作物杂志, 2023, (1): 52–57
[15] 王俊珍, 周美亮, 李发良, 张凯旋, 朱剑锋, 沈阿衣, 洛古有夫, 姚聚红, 殷远杰, 伍东明, 张杰. 苦荞新品种“川荞6号”的选育及栽培技术[J]. 作物杂志, 2022, (6): 241–244
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!