作物杂志,2025, 第3期: 255–262 doi: 10.16035/j.issn.1001-7283.2025.03.035

• 种子科技 • 上一篇    

种子大小对旱地小麦种子萌发、幼苗特性和抗旱性的影响

黄明1(), 付鑫鑫1(), 张振旺1,2, 张军1, 李友军1   

  1. 1河南科技大学农学院,471023,河南洛阳
    2中国农业大学农学院,100083,北京
  • 收稿日期:2024-03-18 修回日期:2024-05-15 出版日期:2025-06-15 发布日期:2025-06-03
  • 通讯作者: 付鑫鑫,研究方向为小麦高产生理生态,E-mail:fxx17838406610@163.com
  • 作者简介:黄明,研究方向为旱地节水农业和高产栽培理论与技术,E-mail:huangming_2003@126.com
  • 基金资助:
    河南省特色骨干学科群建设项目(17100001);国家级大学生创新训练计划项目(202210464063)

Effects of Seed Sizes on Seed Germination, Seedling Characteristics and Drought Resistance of Dryland Wheat

Huang Ming1(), Fu Xinxin1(), Zhang Zhenwang1,2, Zhang Jun1, Li Youjun1   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan,China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China
  • Received:2024-03-18 Revised:2024-05-15 Online:2025-06-15 Published:2025-06-03

摘要: 为探明种子大小对小麦种子萌发、幼苗根系性状、叶片生理特性和抗旱性的影响,以洛旱6号和洛旱22的大粒(>6目筛,粒径>3.35 mm)、中粒(6~8目筛,粒径2.36~3.35 mm)和小粒(<8目筛,粒径<2.36 mm)种子为材料,在室内设置干旱(20% PEG-6000模拟T)和正常供水对照(CK)2个条件,测定种子萌发特性以及处理后3、6、9 d的幼苗根系特性、抗氧化酶系统和渗透调节物质。结果表明,与小粒种子相比,干旱下洛旱22大粒种子发芽势和发芽率分别显著提高7.2%和12.4%,对照下洛旱6号分别显著提高42.0%和36.7%,但中粒种子无显著优势。与小粒种子相比,洛旱6号大粒种子干旱和对照下的幼苗根系活力在处理后3、6 d均提高,而洛旱22无显著差异。随种子粒径的增加,幼苗根长、根表面积、根体积、根尖数和分枝数均增加,且多达显著水平;幼苗叶片超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性、可溶性糖(SS)含量呈上升趋势,丙二醛(MDA)和游离脯氨酸(Pro)含量呈下降趋势。与小粒种子相比,干旱下洛旱22大粒种子的SOD活性显著提高,洛旱6号的SS含量显著提高;对照下洛旱6号的CAT活性显著提高,洛旱22的MDA和Pro含量均显著降低。与中、小粒种子相比,2个小麦品种的大粒种子的综合抗旱系数均有所提高。因此,大粒种子萌发特性、幼苗根系和叶片抗逆生理特性具有优势,但影响效应因干旱胁迫、品种和指标而异。筛选并种植大粒种子有利于提高旱地小麦种子发芽和幼苗发育指标。

关键词: 小麦, 种子大小, 幼苗, 根系, 生理特性, 抗旱性

Abstract:

In order to investigate the effects of seed sizes on seed germination, seedling root traits and leaf physiological characteristics and drought resistance of wheat, a hydroponic experiment was conducted. Large grain (> 6-mesh sieve, particle size > 3.35 mm), medium grain (6-8-mesh sieve, particle size 2.36-3.35 mm) and small grain (< 8-mesh sieve, grain size < 2.36mm) of Luohan 6 and Luohan 22 were selected and used as materials. Two water levels of 20% PEG-6000 simulated drought for T treatment and normal water supply for CK were conducted under hydroponic condition. The characteristics of seed germination, and the root characteristics, antioxidant enzyme system and osmotic regulation substances in seedlings at 3, 6, and 9 days after treatments were determined. The results showed that the germination potential and germination rate of large seeds were significantly increased by 7.2% and 12.4% for Luohan 22 under T treatment, and 42.0% and 36.7% for Luohan 6 under CK, but there was no significant advantage in medium seeds compared with small seeds. Compared with small seeds, the root activity of large seeds of Luohan 6 under drought and control all increased at three and six days after treatment, but there was no significant difference in Luohan 22. With the increase of seed size, the root length, root surface area, root volume, the number of root tips and branches increased significantly; and the activities of superoxide dismutase (SOD) and catalase (CAT) and the content of soluble sugar (SS) in seedling leaves showed an increasing trend, while the content of malondialdehyde (MDA) and free proline (Pro), showed a decreasing trend. Compared with small seeds, the SOD activity of large seeds under T treatment was significantly increased, the CAT activity under CK and the content of SS under T treatment was increased in Luohan 6, and the MDA and Pro contents of Luohan 22 under CK were all decreased; Compared with medium and small seeds, the comprehensive drought resistance coefficients of the two wheat varieties were all increased. Overall, large seeds have major advantages in terms of germination, seedling roots, and stress resistance; however, the impacts differed based on drought stress, variety, and measurement indexes. Screening and planting large-size seeds is beneficial for improving the germination of dryland wheat seeds and the indexes of seedling development.

Key words: Wheat, Seed size, Seedling, Root, Physiological characteristic, Drought resistance

表1

种子大小对小麦发芽势和发芽率的影响

品种
Variety
种子大小
Seed size
发芽势Germination potential 发芽率Germination rate
T CK T CK
洛旱6号Luohan 6 30.00±3.78Aa 81.90±4.12Ab 58.57±5.15Aa 92.86±2.86Ab
25.71±5.71Aa 74.76±7.33Ab 51.90±3.30Aa 86.67±4.36Bb
23.81±1.65Aa 40.95±3.30Bb 41.90±3.60ABa 56.19±0.82Cb
洛旱22 Luohan 22 38.57±2.86Aa 59.52±4.36Ab 57.14±1.43Aa 85.71±1.43Ab
28.57±7.14Ba 54.29±8.92Ab 40.95±8.61Ba 80.95±6.75Ab
31.40±2.86Ba 52.38±5.02Ab 44.70±7.87Ba 82.86±2.47Ab

图1

种子大小对小麦幼苗根系活力的影响 不同大写字母表示同一测定时期同一处理下不同种子大小间差异显著;不同小写字母表示同一测定时期同一种子大小不同处理间差异显著(P < 0.05)。下同。

表2

种子大小对小麦幼苗根系特性的影响

指标
Index
处理
Treatment
天数
Days (d)
洛旱6号Luohan 6 洛旱22 Luohan 22
总根长
Total root length (cm)
T 4 335.6±4.2Ab 208.3±9.4Bb 152.4±13.6Cb 289.5±20.4Ab 190.8±12.7Bb 128.0±16.4Cb
8 454.2±16.3Ab 347.0±21.2Bb 201.7±5.7Cb 417.6±13.0Ab 299.6±22.6Bb 212.6±5.7Ca
CK 4 557.4±8.4Aa 406.9±4.9Ba 314.2±12.6Ca 457.5±26.4Aa 370.3±15.1Ba 257.5±6.0Ca
8 759.4±15.0Aa 573.8±47.0Ba 392.8±11.0Ca 558.8±23.7Aa 462.2±18.5Ba 291.5±47.3Ca
总根表面积
Total root surface
area (cm2)
T 4 27.3±1.6Ab 17.7±0.8Bb 13.8±0.2Cb 28.6±2.3Ab 16.7±0.6Bb 10.2±1.3Cb
8 40.2±1.1Ab 34.4±3.3Bb 20.4±0.3Cb 39.9±4.1Aa 28.6±3.0Ba 21.1±1.0Ca
CK 4 40.8±2.3Aa 30.1±0.9Ba 24.4±2.6Ca 33.9±0.6Aa 28.0±0.7Ba 20.7±1.7Ca
8 56.0±5.1Aa 45.0±4.2Ba 30.2±1.8Ca 47.8±3.1Aa 35.7±4.4Ba 23.3±5.1Ca
根直径
Root diameter (mm)
T 4 0.32±0.03Aa 0.30±0.03Aa 0.28±0.01Aa 0.28±0.02Aa 0.29±0.02Aa 0.25±0.02Aa
8 0.33±0.00Aa 0.30±0.01Ba 0.27±0.01Ca 0.33±0.02Aa 0.28±0.01Ba 0.32±0.02Aa
CK 4 0.25±0.01Ab 0.23±0.01Ab 0.23±0.01Ab 0.26±0.00Aa 0.26±0.01Aa 0.23±0.01Ba
8 0.23±0.02Ab 0.25±0.01Ab 0.23±0.00Ab 0.26±0.01Ab 0.26±0.01Aa 0.23±0.01Bb
总根体积
Total root volume (cm3)
T 4 0.18±0.03Aa 0.13±0.02Ab 0.13±0.03Aa 0.20±0.03Aa 0.14±0.03Aa 0.07±0.01Bb
8 0.29±0.00Ab 0.25±0.01Ba 0.16±0.01Ca 0.33±0.03Aa 0.20±0.02Ba 0.17±0.02Ba
CK 4 0.24±0.02Aa 0.17±0.01Ba 0.15±0.03Ba 0.20±0.02Aa 0.15±0.02Ba 0.15±0.02Ba
8 0.36±0.02Aa 0.28±0.03Ba 0.19±0.02Ca 0.32±0.03Aa 0.23±0.03Ba 0.15±0.03Ca
总根尖数Total root tips T 4 460.3±44.1Ab 385.7±8.7ABb 318.3±50.7Ba 445.0±77.5Ab 292.7±38.0Bb 230.3±30.2Bb
8 1076.0±9.4Ab 703.3±163.6Ba 473.0±137.3Ba 1009.0±20.2Ab 592.3±215.5Ba 349.7±36.7Bb
CK 4 919.7±38.6Aa 728.3±26.6Ba 431.3±53.1Ca 725.3±56.6Aa 611.7±26.2Aa 460.3±58.0Ba
8 1562.7±87.2Aa 978.0±88.8Ba 766.3±110.6Ba 1471.0±84.1Aa 950.3±155.3Ba 674.0±21.7Ca
根分枝数
Number of root branches
T 4 909.3±71.3Ab 564.7±65.2Bb 402.0±136.1Ba 656.3±32.2Ab 467.3±73.7Bb 399.0±55.1Ba
8 1849.3±49.8Aa 1151.3±90.4Bb 510.3±43.7Cb 1388.3±128.4Ab 1172.7±105.8Aa 659.7±115.6Ba
CK 4 1469.0±126.9Aa 1010.3±7.6Ba 606.3±62.5Ca 1150.0±122.5Aa 805.0±66.6Ba 490.7±57.2Ca
8 2639.0±525.2Aa 1915.0±316.1ABa 1154.7±64.4Ba 1835.0±37.5Aa 1485.7±247.2Aa 829.3±110.8Ba

图2

种子大小对小麦幼苗叶片SOD、CAT活性和MDA含量的影响

图3

种子大小对小麦幼苗叶片SS和Pro含量的影响

表3

种子大小对小麦萌发期和幼苗期抗旱系数和综合抗旱系数的影响

指标Index 洛旱6号 Luohan 6 洛旱22 Luohan 22
发芽率Germination rate 0.63 0.60 0.75 0.67 0.51 0.54
发芽势Germination energy 0.37 0.34 0.58 0.65 0.53 0.60
根系活力Root activity 1.25 1.18 1.20 1.45 1.43 1.12
总根长度Total root length 0.60 0.57 0.50 0.71 0.60 0.65
总根表面积
Total root surface area
0.74 0.68 0.63 0.88 0.61 0.78
根直径Root diameter 0.33 0.30 0.27 0.31 0.28 0.30
总根体积Total root volume 0.25 0.21 0.15 0.28 0.18 0.13
总根尖数Total root tips 0.63 0.66 0.66 0.66 0.58 0.51
根分枝数
Number of root branches
0.67 0.59 0.52 0.69 0.72 0.80
SOD活性SOD activity 0.69 0.83 0.73 0.79 0.58 0.69
CAT活性CAT activity 0.40 0.44 0.55 0.46 0.41 0.52
MDA含量MDA content 1.31 1.48 1.30 1.46 1.46 1.44
SS含量SS content 0.44 0.38 0.44 0.52 0.52 0.61
Pro含量Pro content 3.20 2.77 2.97 5.27 4.07 3.88
综合抗旱系数
Comprehensive drought
resistance coefficient
11.51 11.02 11.24 14.80 12.47 12.57
[1] Lobell B D, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333(6042):616-620.
doi: 10.1126/science.1204531 pmid: 21551030
[2] 王德铭. 作物良种在农业生产中的地位和作用. 中国农业信息, 2015, 178(13):36.
[3] 张世挺, 杜国祯, 陈家宽, 等. 不同营养条件下24种高寒草甸菊科植物种子重量对幼苗生长的影响. 生态学报, 2003, 23(9):1737-1744.
[4] Swanborough P, Westoby M. Seedling relative growth rate and its components in relation to seed size: phylogenetically independent contrasts. Functional Ecology, 1996, 10(2):176-184.
[5] 刘斌祥, 程秋博, 周芳, 等. 种子大小与播种深度对玉米出苗、苗期光合特性与保护酶活性的影响. 华北农学报, 2020, 35(2):98-106.
doi: 10.7668/hbnxb.20190319
[6] 陈思晓, 贾俊娟, 傅兆麟, 等. 小麦品种内种子大小分级与种子质量的关系. 浙江农业科学, 2020, 61(4):624-629.
doi: 10.16178/j.issn.0528-9017.20200405
[7] 马秀云, 赵鹏, 程明珠, 等. 小麦粒重与幼苗根系生长发育的关系. 麦类作物学报, 2023, 43(5),632-639.
[8] 刘生祥, 宋晓华. 春小麦种子大小对主要性状及产量的影响. 种子, 2003(1):29-30.
[9] 毛思帅, 周吉红, 王俊英, 等. 冬小麦种子大小对群体指标和产量的影响. 作物杂志, 2015(3):161-163.
[10] 崔俊美, 张朝明, 张怀渝, 等. 7个小麦品种的抗旱性比较. 麦类作物学报, 2015, 35(11):1542-1550.
[11] 王志伟, 王志龙, 乔祥梅, 等. 云南小麦品种(系)萌发期抗旱性评价. 作物研究, 2022, 36(4):300-306.
[12] Zhang X, Huang G, Bian X, et al. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environment, 2013, 59(2):80-88.
[13] 李小芳, 张志良. 植物生理学实验指导:第五版. 北京: 高等教育出版社, 2017.
[14] 赵平, 韩杰, 张从宇, 等. 不同基因型小麦对干旱胁迫响应的差异研究. 种子, 2011, 30(2):25-29.
[15] 张军, 鲁敏, 孙树贵, 等. 拔节期低温胁迫对小麦生理生化特性和产量的影响. 西北农业学报, 2014, 23(2):73-79.
[16] 王方琳, 柴成武, 尉秋实, 等. 沙埋和种子大小对沙蒿种子萌发及幼苗生长的影响. 西北林学院学报, 2020, 35(6):129-134.
[17] 吴薇. 不同粒重春小麦种子活力差异的研究. 乌鲁木齐:新疆农业大学, 2016.
[18] 周芳, 程秋博, 金容, 等. 种子大小与播种深度对川中丘陵区玉米根系生长的影响. 中国生态农业学报, 2019, 27(12):1799-1811.
[19] Kennedy P G, Hausmann N J, Wenk E H, et al. The importance of seed reserves for seedling performance: an integrated approach using morphological, physiological, and stable isotope techniques. Oecologia, 2004, 141(4):547-554.
pmid: 15338415
[20] 刘艳江, 何选泽, 叶红环, 等. 合江方竹种子大小变异对萌发及幼苗生长的影响. 种子, 2022, 41(4):111-115,149.
[21] 何建社, 张利, 刘千里, 等. 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应. 生态学报, 2018, 38(7):2362-2371.
[22] Sun W H, Wu Y Y, Wen X Y, et al. Different mechanisms of photosynthetic response to drought stress in tomato and violet ophragmus. Phtotsynthetica, 2016, 54(2):226-233.
[23] 许彩丽, 周易籼森, 谢乔颖, 等. 干旱胁迫对箭叶淫羊藿生理生化的影响. 湖南林业科技, 2020, 47(5):20-24,41.
[24] Abraham B. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant,Cell & Environment, 2017, 40(1):4-10.
[25] 常云霞, 李姿琳, 李芙蓉. IAA对Cd2+胁迫下拟南芥渗透调节物质及抗氧化特性的影响. 周口师范学院学报, 2018, 35(5):79-82,133.
[26] 王威, 胡海银. 玉米籽粒大小与其植株内源保护酶活性及单株种子产量的关系. 甘肃农业大学学报, 2013, 48(4):44-48.
[27] Lebrija-Trejos E, Reich P B, Hernández A, et al. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecology Letters, 2016, 19(9):1071-1080.
doi: 10.1111/ele.12643 pmid: 27346439
[28] 闫兴富, 邓晓娟, 王静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响. 应用生态学报, 2020, 31(10):3331-3339.
doi: 10.13287/j.1001-9332.202010.006
[1] 贺云霞, 马建辉, 张黛静, 刘东华, 晁晓燕, 陈慧平, 李春喜. 不同氮肥增效剂对减少豫北麦田气态氮损失及其增产效果研究[J]. 作物杂志, 2025, (3): 108–115
[2] 王佳童, 马映辰, 冯燕飞, 路佳慧, 郭振清, 李学利, 李云, 韩玉翠, 林小虎. 减量追氮对冀东地区春小麦磷、钾肥利用及品质的影响[J]. 作物杂志, 2025, (3): 141–148
[3] 李家豪, 贾永红, 连世昊, 刘跃, 于姗, 田文强, 王子骞, 张金汕, 石书兵. 调环酸钙和施磷量对冬小麦生长、干物质积累及产量的影响[J]. 作物杂志, 2025, (3): 165–171
[4] 梁辉, 章建新, 薛丽华, 贾珂珂. 水氮后移条件下滴灌量对新农豆2号根系生长及产量的影响[J]. 作物杂志, 2025, (3): 233–240
[5] 樊明, 李红霞, 王轲, 唐华丽, 杨乐, 李前荣, 叶兴国, 张双喜. 抗白粉病小麦新品种宁春66号选育及栽培技术[J]. 作物杂志, 2025, (3): 249–254
[6] 田文强, 王泓懿, 聂凌帆, 孙刚刚, 张君, 张强斌, 于姗, 李家豪, 张金汕, 石书兵. 播期和播量对超晚播小麦群体生长、干物质积累及产量的影响[J]. 作物杂志, 2025, (2): 115–122
[7] 赵远玲, 谭巍巍, 刘昭军, 李铁, 李冬梅, 孙铭隆, 高凤梅, 王永斌. 利用花药培养技术培育脂肪氧化酶(LOX)活性低的耐储小麦新品系[J]. 作物杂志, 2025, (2): 40–46
[8] 娄鸿耀, 李翰霖, 秦志列, 曲曼古丽·库尔班, 朱明慧, 刘昌文, 张胜全. 光温敏雄性不育小麦育性恢复研究进展[J]. 作物杂志, 2025, (2): 9–13
[9] 米东明, 周佐艳, 张晓妍, 范振杰, 孙培杰, 黄潇, 任爱霞, 孙敏, 任永康. 施氮量对黑小麦物质运转与蛋白质含量的影响[J]. 作物杂志, 2025, (2): 155–161
[10] 刘佩瑶, 冉莉萍, 杨佳庆, 王海博, 熊飞, 余徐润. 小麦穗形态建成和生理特征及外界影响因素的研究进展[J]. 作物杂志, 2025, (1): 1–9
[11] 景茂雅, 张子玉, 张萌, 合佳敏, 严翻翻, 高艳梅, 张永清. 水杨酸浸种对盐胁迫藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2025, (1): 194–201
[12] 侯赛赛, 李畅, 李青云, 王鑫鑫. 不同供磷水平下大白菜的生长和磷吸收策略研究[J]. 作物杂志, 2025, (1): 220–226
[13] 杨丹丹, 韩雪, 孔欣欣, 赵国轩, 苏亚中, 赵鹏飞, 金建猛, 赵国建. 71份冬小麦苗期渗透胁迫抗性鉴定及相关农艺性状指标分析[J]. 作物杂志, 2025, (1): 243–249
[14] 颜群翔, 庞玉辉, 洪壮壮, 毕俊鸽, 王春平. 141份国内外小麦种质资源主要性状遗传多样性分析与特异性评价[J]. 作物杂志, 2025, (1): 26–34
[15] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!