作物杂志,2024, 第6期: 1–8 doi: 10.16035/j.issn.1001-7283.2024.06.001

• 专题综述 •    下一篇

水稻根系形态生理对干湿交替灌溉方式的响应研究进展

法晓彤(), 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗()   

  1. 扬州大学江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心,225009,江苏扬州
  • 收稿日期:2024-05-06 修回日期:2024-06-21 出版日期:2024-12-15 发布日期:2024-12-05
  • 通讯作者: 张耗,主要从事作物栽培生理研究,E-mail:haozhang@yzu.edu.cn
  • 作者简介:法晓彤,研究方向为水稻栽培生理,E-mail:fxt1019@126.com
  • 基金资助:
    国家自然科学基金(32272197);国家自然科学基金(32071944);江苏省“六大人才高峰高层次人才”项目(SWYY-151);江苏高校优势学科建设工程资助项目(PAPD)

Research Progress on Response of Rice Root Morphology and Physiology to Alternate Wetting and Drying Irrigation

Fa Xiaotong(), Meng Qinghao, Wang Chen, Gu Hanzhu, Jing Wenjiang, Zhang Hao()   

  1. Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology / Jiangsu Provincial Key Laboratory of Crop Cultivation Physiology / Jiangsu Provincial Collaborative Innovation Center of Modern Grain Crop Industry Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2024-05-06 Revised:2024-06-21 Online:2024-12-15 Published:2024-12-05

摘要:

作物地上部分生长与产量形成受根系的形态特点及其生理活动的显著影响。水稻作为农业第一用水大户,水资源短缺势必会严重影响到其生产的发展,干湿交替灌溉作为一种节水灌溉方式目前在水稻生产中应用较为广泛,然而有关干湿交替灌溉下水稻根系生长发育是如何响应的,其内在机制是什么均缺少系统分析和总结。为此,本文综述了干湿交替灌溉技术及水稻根系形态与生理特征,分析了根系生长发育对干湿交替灌溉的响应机理,并提出了目前存在的问题和对未来研究的展望。

关键词: 水稻, 根系, 产量, 干湿交替灌溉

Abstract:

The morphological and physiological characteristics of crop root system play an important role in the growth and development of aboveground part and the formation of yield. Rice is the largest water user in agriculture, and the shortage of water resources is bound to seriously affect the development of rice production. As a water-saving irrigation method, alternate wetting and drying irrigation technology is widely used in rice production at present. However, there is a lack of systematic analysis and summary on how rice root growth and development respond to alternate wetting and drying irrigation, and what its internal mechanism is. Therefore, this paper reviewed the technology of alternate irrigation and the morphological and physiological characteristics of rice roots, analyzed the response mechanism of root growth and development to dry and wet alternating irrigation, and put forward the existing problems and prospects for future research.

Key words: Rice (Oryza sativa L.), Roots, Yield, Alternate wetting and drying irrigation

图1

不同灌溉方式下水稻根系重要特征的图示

[1] Wu F, Wang Y H, Liu Y, et al. Simulated responses of global rice trade to variations in yield under climate change: Evidence from main rice-producing countries. Journal of Cleaner Production, 2021, 281:124690.
[2] Suleiman S O, Habila D G, Mamadou F, et al. Grain yield and leaf gas exchange in upland NERICA rice under repeated cycles of water deficit at reproductive growth stage. Agricultural Water Management, 2022, 264:107507.
[3] Pimentel D, Berger B, Filiberto D, et al. Water resources: agricultural and environmental issues. BioScience, 2004, 54(10):909-918.
[4] Gowda V R P, Henry A, Yamauchi A, et al. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, 2011, 122(1):1-13.
[5] Yang J C, Zhou Q, Zhang J H. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. The Crop Journal, 2017, 5(2):151-158.
[6] Ye Y S, Liang X Q, Chen Y X, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation,yield,water and nitrogen use. Field Crops Research, 2013, 144:212-224.
[7] Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research, 1997, 52(3):231-248.
[8] Li S, Zuo Q, Jin X X, et al. The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system. Agricultural Water Management, 2018, 201:11-20.
[9] Lou D J, Chen Z, Yu D Q, et al. SAPK2 contributes to rice yield by modulating nitrogen metabolic processes under reproductive stage drought stress. Rice, 2020, 13(1):1-12.
[10] Zhang H, Xue Y G, Wang Z Q, et al. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 2009, 49(6):2246-2260.
[11] 吴龙龙, 虞轶俊, 田仓, 等. 干湿交替灌溉下施氮模式对水稻光合产物和氮转运的影响. 中国水稻科学, 2022, 36(3):295-307.
doi: 10.16819/j.1001-7216.2022.210507
[12] 徐国伟, 赵喜辉, 江孟孟, 等. 轻度干湿交替灌溉协调水稻根冠生长,提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27(8):1388-1396.
[13] 陈婷婷, 许更文, 钱希旸, 等. 花后轻干湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015, 48(7):1288-1299.
doi: 10.3864/j.issn.0578-1752.2015.07.04
[14] Zhang H, Li H W, Yuan L M, et al. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012, 63(1):215-227.
doi: 10.1093/jxb/err263 pmid: 21926094
[15] 褚光, 展明飞, 朱宽宇, 等. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42(7):1026-1036.
[16] 吴海兵, 刘道红, 钟鸣, 等. 水分管理和钾肥施用对水稻产量和抗倒伏性的影响. 作物杂志, 2019(1):127-133.
[17] 卞金龙, 蒋玉兰, 刘艳阳, 等. 干湿交替灌溉对抗旱性不同水稻品种产量的影响及其生理原因分析. 中国水稻科学, 2017, 31(4):379-390.
doi: 10.16819/j.1001-7216.2017.7006 379
[18] Teramoto S, Uga Y. A deep learning-based phenotypic analysis of rice root distribution from field images. Plant Phenomics, 2020, 2020:1-10.
[19] de Dorlodot S, Forster B, Pagès L, et al. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12(10):474-481.
doi: 10.1016/j.tplants.2007.08.012 pmid: 17822944
[20] 张玉, 秦华东, 黄敏, 等. 水稻根系空间分布特性的数学模拟及应用. 华南农业大学学报, 2013, 34(3):304-308.
[21] 代贵金, 华泽田, 王彦荣. 不同耕作与施肥方法对水稻根系生长分布和活性的影响. 沈阳农业大学学报, 2008, 39(3):274-278.
[22] 冯蕾. 施肥对水稻植株碳氮分配与积累的影响. 西安:西安建筑科技大学, 2011.
[23] 张玉屏, 朱德峰, 林贤青, 等. 田间条件下水稻根系分布及其与土壤容重的关系. 中国水稻科学, 2003, 17(2):141-144.
[24] Zhuang Y H, Zhang L, Li S S, et al. Effects and potential of water-saving irrigation for rice production in China. Agricultural Water Management, 2019, 217:374-382.
[25] Wang M, Yu S E, Shao G C, et al. Impact of Alternate drought and flooding stress on water use, and nitrogen and phosphorus losses in a paddy field. Polish Journal of Environmental Studies, 2018, 27(1),345-355.
[26] 蔡昆争, 骆世明, 段舜山. 水稻根系在根袋处理条件下对氮养分的反应. 生态学报, 2003, 23(6):1109-1116.
[27] 周晚来, 易永健, 屠乃美, 等. 根际增氧对水稻根系形态和生理影响的研究进展. 中国生态农业学报, 2018, 26(3):367-376.
[28] 景文疆, 顾汉柱, 张小祥, 等. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应. 中国水稻科学, 2022, 36(5):505-519.
doi: 10.16819/j.1001-7216.2022.211104
[29] 徐国伟, 吕强, 陆大克, 等. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响. 作物学报, 2016, 42(10):1495- 1505.
doi: 10.3724/SP.J.1006.2016.01495
[30] Zhao C, Chen M Y, Li X F, et al. Effects of soil types and irrigation modes on rice root morphophysiological traits and grain quality. Agronomy, 2021, 11(1):120.
[31] 刘磊, 宋娜娜, 齐晓丽, 等. 水稻根系特征与氮吸收利用效率关系的研究进展. 作物杂志, 2022(1):11-19.
[32] Song T, Xu F Y, Yuan W, et al. Comparison on physiological adaptation and phosphorus use efficiency of upland rice and lowland rice under alternate wetting and drying irrigation. Plant Growth Regulation, 2018, 86:195-210.
[33] 陈云, 刘昆, 李婷婷, 等. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响. 中国水稻科学, 2022, 36(3):269-277.
doi: 10.16819/j.1001-7216.2022.210309
[34] Zhang J, Zhang Y Y, Song N Y, et al. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. Journal of Integrative Agriculture, 2021, 20(6):1465-1473.
[35] Zhang H, Chen T T, Wang Z Q, et al. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. Journal of Experimental Botany, 2010, 61(13):3719- 3733.
doi: 10.1093/jxb/erq198 pmid: 20584789
[36] 褚光. 不同水分, 养分利用效率水稻品种的根系特征及其调控技术. 扬州:扬州大学, 2016.
[37] 徐国伟, 孙会忠, 陆大克, 等. 不同水氮条件下水稻根系超微结构及根系活力差异. 植物营养与肥料学报, 2017, 23(3):811-820.
[38] 朱安, 高捷, 黄健, 等. 水稻根系形态生理及其与稻米品质关系的研究进展. 作物杂志, 2020(2):1-8.
[39] 李合松, 黄见良, 邹应斌, 等. 双季稻超高产栽培条件下根系特性的研究. 激光生物学报, 1999, 8(3):194-200.
[40] 魏海燕, 张洪程, 张胜飞, 等. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008, 34(3):429-436.
[41] 李婷婷, 冯钰枫, 朱安, 等. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33(4):293-302.
doi: 10.16819/j.1001-7216.2019.8116
[42] 金涛, 潘娟娟, 闫寒, 等. 植物激素调控水稻冠根发育研究进展. 信阳师范学院学报(自然科学版), 2018, 31(3):511-516.
[43] 代宇佳, 罗晓峰, 周文冠, 等. 生物和非生物逆境胁迫下的植物系统信号. 植物学报, 2019, 54(2):255-264.
doi: 10.11983/CBB18152
[44] Song T, Das D, Yang F, et al. Genome-wide transcriptome analysis of roots in two rice varieties in response to alternate wetting and drying irrigation. The Crop Journal, 2020, 8(4):586- 601.
[45] 徐国伟, 陆大克, 刘聪杰, 等. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7):137-146.
[46] 张奇, 张清旭, 庞晓敏, 等. 稗草根系分泌物对水稻种子萌发和苗期生长的影响. 亚热带农业研究, 2020, 16(1):8-15.
[47] Wang K, Xu F Y, Yuan W, et al. Elevated CO2 enhances rice root growth under alternate wetting and drying irrigation by involving ABA response: Evidence from the seedling stage. Food and Energy Security, 2023, 12(2):e442.
[48] Guan L M, Zhao J, Scandalios J G. Cis-elements and trans- factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. The Plant Journal, 2000, 22(2):87-95.
[49] Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53(1):247-273.
[50] Wang C R, Yang A F, Yin H Y, et al. Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. Journal of Integrative Plant Biology, 2008, 50(4):427-434.
doi: 10.1111/j.1774-7909.2008.00638.x
[51] 张自常, 李鸿伟, 曹转勤, 等. 施氮量和灌溉方式的交互作用对水稻产量和品质影响. 作物学报, 2013, 39(1):84-92.
[52] 孙静文, 陈温福, 臧春明, 等. 水稻根系研究进展. 沈阳农业大学学报, 2002, 33(6):466-470.
[53] 朱旺, 张翔, 耿孝宇, 等. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系. 中国水稻科学, 2023, 37(6):617-627.
doi: 10.16819/j.1001-7216.2023.230504
[54] 王熹, 陶龙兴, 黄效林, 等. 灌溉稻田水稻旱作法研究—水稻的生育与生理特性. 中国农业科学, 2004, 37(9):1274-1281.
[55] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1):36-46.
[56] 杨临泽, 寿惠霞. 水稻根系分泌物脱氧麦根酸对根际和根内细菌群落组成的影响. 浙江大学学报(农业与生命科学版), 2023, 49(3):376-388.
[57] 甘林, 代玉立, 杨秀娟, 等. 香蕉抗(感)病品种根系分泌物对枯萎病菌和枯草芽孢杆菌的生物效应. 应用生态学报, 2020, 31(7):2279-2286.
doi: 10.13287/j.1001-9332.202007.039
[58] 罗晓蔓, 周书宇, 杨雪. 植物根系分泌物的分类和作用. 安徽农业科学, 2019, 47(4):37-39.
[59] Kato-Noguchi H, Ino T, Sata N, et al. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiologia Plantarum, 2002, 115(3):401-405.
[60] 徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2):140-146.
doi: 10.11686/cyxb20140217
[61] Gu H Z, Wang X, Zhang M H, et al. The response of roots and rhizosphere environment to integrative cultivation practices in paddy rice. Journal of Integrative Agriculture, 2024, 23(6):1879-1896.
[62] Ding L J, Cui H L, Nie S A, et al. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 2019, 95 (5):fiz040.
[63] Martin F M, Uroz S, Barker D G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356(6340):eaad4501.
[64] Wu Z H, Liu Q S, Li Z Y, et al. Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiology, 2018, 18(1):1-11.
[65] Bardgett R D, Freeman C, Ostle N J. Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2008, 2(8):805-814.
[66] 王树起, 韩晓增, 乔云发. 根系分泌物的化感作用及其对土壤微生物的影响. 土壤通报, 2007, 38(6):1219-1226.
[67] 邱佳慧, 刘博懿, 靳伟荣, 等. 不同灌溉模式对水稻耗水量及产量的影响. 江西水利科技, 2021, 47(5):313-316.
[1] 程生煜, 杨彩红, 崔文强, 姜晓敏. 不同耕种模式对玉米叶片生理及结构的影响[J]. 作物杂志, 2024, (6): 103–112
[2] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[3] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
[4] 阳新月, 向颖, 陈子恒, 林茜, 邓振鹏, 周克友, 李明聪, 王季春. 有机质施用量对马铃薯产量及氮、磷、钾养分吸收利用的影响[J]. 作物杂志, 2024, (6): 153–161
[5] 张金鑫, 葛均筑, 李从锋, 周宝元. 黄淮海平原夏玉米生长季气候资源分配与利用特征[J]. 作物杂志, 2024, (6): 162–170
[6] 赵希梅, 李琪, 严如玉, 向风云, 李雅琼, 李绪勋, 邹家龙, 李继福. 无人机飞播时期及播种方式对冬油菜产量、品质和经济效益的影响[J]. 作物杂志, 2024, (6): 179–185
[7] 金彦君, 祝洪沙, 李成东, 王金禹, 张忠福, 万婷丽, 周爱爱, 撒刚, 程李香, 刘娟, 余斌. 外源激素对雾培马铃薯叶片气孔密度及块茎产量的调控[J]. 作物杂志, 2024, (6): 205–211
[8] 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218–225
[9] 孙明茂, 刘丽霞, 孙虎, 崔迪. 水稻重组自交系群体花色苷及重要农艺性状分析[J]. 作物杂志, 2024, (6): 26–38
[10] 于沐, 杨海棠, 胡延岭, 刘软枝, 石彦召, 李盼, 韩艳红, 朱桢桢, 李世忠, 郭振超. 花生产量组成的基因型与环境互作及稳定性分析[J]. 作物杂志, 2024, (6): 55–60
[11] 杨铁鑫, 董立强, 马亮, 冯莹莹, 李志强. 辽宁中部平原稻区香型粳稻品种产量及品质评价[J]. 作物杂志, 2024, (6): 71–77
[12] 孙家猛, 高原, 陈虎, 花芹, 林泉祥, 陈庆全, 李金才, 张海涛. 水稻胚乳突变体cse-2的表型分析及基因定位[J]. 作物杂志, 2024, (5): 1–7
[13] 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105–109
[14] 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110–118
[15] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!