作物杂志,2025, 第4期: 19–28 doi: 10.16035/j.issn.1001-7283.2025.04.003

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米ZmCaM1基因的克隆和表达分析

贺新春(), 杜何为, 黄敏()   

  1. 长江大学生命科学学院,434025,湖北荆州
  • 收稿日期:2024-06-20 修回日期:2024-07-30 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 黄敏,研究方向为玉米遗传育种,E-mail:2381615354@qq.com
  • 作者简介:贺新春,研究方向为玉米遗传育种,E-mail:3122715083@qq.com
  • 基金资助:
    国家自然科学基金(31771801);湖北省自然科学基金面上项目(2022CFB183);湖北省自然科学基金创新群体项目(2022CFA030)

Cloning and Expression Analysis of Maize ZmCaM1 Gene

He Xinchun(), Du Hewei, Huang Min()   

  1. School of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2024-06-20 Revised:2024-07-30 Online:2025-08-15 Published:2025-08-12

摘要: 在植物应对环境胁迫的反应中,钙调蛋白(CaM)发挥着重要作用。基于玉米(Zea mays L.)自交系B73的转录组数据克隆了一个在干旱胁迫后根系高水平表达的CaM基因,并对其进行了生物信息学分析。结果表明,ZmCaM1基因的编码序列大小为450 bp,编码149个氨基酸。ZmCaM1蛋白不含信号肽且具有亲水性特征。在EF-hand结构域上,ZmCaM1蛋白与高粱(Sorghum bicolor L.)和水稻(Oryza sativa L.)等植物中的CaM蛋白高度保守,呈现相似的二级结构和三级结构。此外,ZmCaM1启动子序列中发现了多个与激素和非生物胁迫相关的顺式作用元件。根据蛋白互作预测和酵母双杂交结果,ZmCaM1蛋白与DNA修复蛋白RAD4互作。通过对原核表达蛋白诱导条件的优化,GST-ZmCaM1在0.1 mmol/L IPTG条件下的表达效果最佳,并经凝胶亲和层析纯化得到了GST-ZmCaM1蛋白。表达分析结果显示,ZmCaM1基因在玉米出苗期的根和叶中表达水平较高。干旱胁迫后该基因在根和叶中上调表达,涝渍胁迫后该基因在根和叶中下调表达,进一步验证了ZmCaM1基因与玉米生长发育以及非生物胁迫响应之间的联系。

关键词: 玉米, 钙调蛋白, 非生物胁迫, 生物信息学, 表达分析

Abstract:

Calmodulin (CaM) plays an important role in the response of plants to environmental stress. A CaM gene with a high expression level in the root system after drought stress was cloned based on the transcriptome data of the maize (Zea mays L.) inbred line B73, and bioinformatics analysis was conducted. The results showed that the enconding sequence of ZmCaM1 is 450 bp, encoding 149 amino acids. The ZmCaM1 protein lacked a signal peptide and exhibited hydrophilic properties. The EF-hand domain of the ZmCaM1 protein was highly conserved among plants, such as sorghum (Sorghum bicolor L.) and rice (Oryza sativa L.), and presented similar secondary and tertiary structures. There were several cis-acting elements related to hormones and abiotic stress in ZmCaM1 promoter. In addition, we predicted that ZmCaM1 protein could bind the promoter of RAD4 according to bioinformatics methods, and confirmed above results by yeast two-hybrid. By optimizing the induction conditions for the GST-ZmCaM1 protein, we found that the best expression was achieved under 0.1 mmol/L IPTG, and the GST-ZmCaM1 protein was purified via gel affinity chromatography. Expression analysis showed that the expression level of ZmCaM1 gene was higher in roots and leaves of maize at emergence stage. After drought stress, ZmCaM1 was up regulated in roots and leaves, and it was down regulated in roots and leaves under waterlogging stress. The association between the ZmCaM1 gene with the growth and development of maize as well as the response to abiotic stress were verified.

Key words: Maize, Calmodulin, Abiotic stress, Bioinformatics, Expression analysis

表1

PCR和qRT-PCR引物的信息

引物名称Primer name 基因ID Gene ID 上游引物Forward primer (5′-3′) 下游引物Reverse primer (5′-3′)
ZmCaM1 Zm00001d007194 ATGGCGGACCAGCTCACC TCACTTGGCCATCATGACCTT
qZmCaM1 Zm00001d007194 TCAAATCGCTCCCTGCCTCT GACCCAGTGATCGCATGACA
BK-CaM1
Zm00001d007194
AGGCCGAATTCCCGGGGATCCAT
GGCGGACCAACTCACCG
CCGCTGCAGGTCGACGGATCCTCAC
TTGGCCATCATGACCTT
AD-AP1G1
Zm00001d045195
GCCATGGAGGCCAGTGAATTCATGG
ACCTCGCCATCAATCC
ACGATTCATCTGCAGCTCGAGCTACA
ACCCAGCAGGAAAGTTGC
AD-AP1G2
Zm00001d036305
GCCATGGAGGCCAGTGAATTCAT
GGACCTCGCCATCAACC
ACGATTCATCTGCAGCTCGAGCTACAAC
CCAGAAGGAAAGTTGC
AD-RAD4
Zm00001d032245
GCCATGGAGGCCAGTGAATTCA
TGCGGCGGACGAGGAGC
ACGATTCATCTGCAGCTCGAGTTACAAC
TCCTCTACTTGGATAGAAAAAC
GST-CaM1
Zm00001d007194
GATCTGGTTCCGCGTGGATCCATGGCGG
ACCAGCTCACC
GTCACGATGCGGCCGCTCGAGTCA
CTTGGCCATCATGACCTT
qZmActin Actin TTGCTATCCAGGCTGTTCTT CGACCTCAGCAGCGCGGTCA

图1

ZmCaM1基因的CDS扩增(a)和菌落PCR扩增(b) 1~6代表6个不同的单克隆菌落;M:2000 bp DNA分子量标记。

表2

ZmCaM1蛋白理化性质

一级结构特征
Characteristics of primary structure
预测结果
Prediction result
氨基酸数量Number of amino acids 149
分子量Molecular weight (kDa) 16 831.67
分子式Molecular formula C722H1135N189O253S10
带正电荷残基总数
Total number of positively charged residues
15
带负电荷残基总数
Total number of negatively charged residues
38
平均疏水性Average hydrophobicity -0.602
脂肪指数Aliphatic index 70.07
不稳定系数Instability coefficient 23.23
半衰期Estimated half-life (h) 30.00
等电点Isoelectric point 4.11

图2

ZmCaM1蛋白亲水性与疏水性预测(a)、蛋白信号肽预测(b)、蛋白跨膜结构预测(c)及蛋白磷酸化位点预测(d)

图3

ZmCaM1氨基酸序列与其他20个同源序列比对 蓝色:相似性100%;粉色:相似性≥75%;黄色:相似性≥50%。

图4

ZmCaM1进化树构建和保守结构域

表3

ZmCaM蛋白保守基序

Motif编号Motif number Motif序列Motif sequence
Motif 1 GCITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLNLMAR
Motif 2 FRVFDKDQNGFISAAELRHVMTNLGEKLTDEEVDEMIREADVDGDGQINY
Motif 3 MADQLTDDQISEFKEAFSLFD
Motif 4 EEFVKVMMAKRRRKR
Motif 5 KMKDTDSEEEL
Motif 6 PSSSTERKEERRRRKSHCRIL
Motif 7 HNPSQP
Motif 8 GIWKYAASKLLEIRKSHKRFP
Motif 9 IQEKRRGSEPERSPSPQK
Motif 10 LNHTNV

图5

ZmCaM1蛋白二级结构(a)与三级结构(b)

图6

ZmCaM1启动子顺式作用元件

图7

ZmCaM1蛋白互作网络预测

图8

酵母双杂交验证ZmCaM1互作蛋白

图9

GST-ZmCaM1蛋白原核表达分析(a)及蛋白纯化结果(b)

图10

ZmCaM1基因在不同时期组织(a)中及涝渍(b)与干旱胁迫处理下(c)的相对表达量 不同小写字母表示P < 0.05水平差异显著。

[1] Bothwell J H, Ng C K. The evolution of Ca2+ signalling in photosynthetic eukaryotes. New Phytologist, 2005, 1166(1):21-38.
[2] Azimzadeh J, Nacry P, Christodoulidou A, et al. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. The Plant Cell, 2008, 20(8):2146-2159.
[3] 段红沙, 汪春桃, 魏凤菊. 玉米CaM基因家族鉴定及特性分析. 玉米科学, 2008, 31(2):30-38.
[4] 孟凡力, 关珊, 刘晓进. CFP荧光蛋白文库构建及FRET技术筛选钙调素结合蛋白. 中国细胞生物学学报, 2013, 35(12):12-13.
[5] Vandelle E, Vannozzi A, Wong D, et al. Identification,characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. Plant Physiology and Biochemistry, 2018, 129:221-237.
doi: S0981-9428(18)30254-7 pmid: 29908490
[6] Yang T, Poovaiah B W. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. Journal of Biological Chemistry, 2000, 275(5):3137-3143.
doi: 10.1074/jbc.275.5.3137 pmid: 10652297
[7] Xuan Y, Zhou S, Wang L, et al. Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiology, 2010, 153(4):1895-1906.
doi: 10.1104/pp.110.160424 pmid: 20576787
[8] Ranty B, Aldon D, Galaud J P. Plant calmodulins and calmodulin- related proteins: multifaceted relays to decode calcium signals. Plant Signaling & Behavior, 2006, 1(3):96-104.
[9] Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytologist, 2009, 184(3):517-528.
[10] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biology, 2007, 30:4-7.
[11] Tsai Y C, Koo Y, Delk N A, et al. Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. Plant Journal, 2013, 73(2):325-335.
[12] Mohanta T K, Kumar P, Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin- like proteins in plants. BMC Plant Biology, 2003, 17(1):38-39.
[13] Shimada T L, Takano Y, Shimada T, et al. Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiology, 2014, 164(1):105-118.
[14] 徐渴, 王伟伟, 武宁静, 等. 小麦OFP基因家族鉴定及其低温胁迫的表达分析. 农业生物技术学报, 2005, 29(9):1665-1677.
[15] Yoo J H, Park C Y, Kim J C, et al. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. Journal of Biological Chemistry, 2005, 280(5):3697-3706.
[16] DeFalco T A, Chiasson D, Munro K, et al. Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor- like kinase family. FEBS Letters, 2010, 584(23):4717-4724.
doi: 10.1016/j.febslet.2010.10.059 pmid: 21056039
[17] Yamaguchi T, Aharon G S, Sottosanto J B, et al. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44):16107-16112.
[18] Levy M, Wang Q, Kaspi R, et al. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant Journal, 2005, 43(1):79-96.
doi: 10.1111/j.1365-313X.2005.02435.x pmid: 15960618
[19] Neill S, Barros R, Bright J, et al. Nitric oxide, stomatal closure, and abiotic stress. Journal of Experimental Botany, 2008, 59(2):176-165.
[20] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science, 2005, 10(8):383-389.
[21] McCormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist, 2003, 159(3):585-598.
[1] 李喆豪, 姬米源, 吕梦, 明博, 李少昆, 张海艳, 谢瑞芝. 长期定位条件下不同氮肥运筹对春玉米根冠发育的影响[J]. 作物杂志, 2025, (4): 135–141
[2] 王兴亚, 陈宇涵, 张孟雯, 孙琳琳, 陈利容, 郭玉秋, 龚魁杰. 不同时期施用脱落酸对玉米籽粒灌浆和脱水的影响[J]. 作物杂志, 2025, (4): 173–180
[3] 吴凤婕, 侯楠, 齐翔鲲, 杨克军, 付健, 王玉凤. 不同施氮量对半干旱区糯玉米主要营养品质及产量的影响[J]. 作物杂志, 2025, (4): 267–275
[4] 史亚兴, 刘俊玲, 朱贵川, 赫忠友, 刘辉, 樊艳丽, 徐丽, 卢柏山, 赵久然, 骆美洁. du1新等位变异的克隆及其分子标记的开发[J]. 作物杂志, 2025, (4): 41–48
[5] 补清, 杨开强, 王添, 施思, 信国琛, 陈勇, 董朝霞, 安静. 纳米材料使用方法及缓解作物非生物胁迫的研究进展[J]. 作物杂志, 2025, (4): 9–18
[6] 侯岳, 王红亮, 李杰, 李春杰, 陈范骏. 禾本科与豆科饲草作物间套作对饲草品质及氮素吸收影响的研究进展[J]. 作物杂志, 2025, (3): 1–10
[7] 金梓浩, 赵文清, 王芳, 王威, 彭云玲, 常芳国. 三种外源植物生长调节物质对玉米幼苗耐寒性的影响[J]. 作物杂志, 2025, (3): 125–132
[8] 王祎, 任永福, 张正鹏, 丁德芳, 张靖, 刘祎鸿, 孙多鑫, 陈光荣. 不同覆盖材料对河西灌区土壤环境及玉米产量的影响[J]. 作物杂志, 2025, (3): 149–155
[9] 侯楠, 吴凤婕, 齐翔鲲, 王玉凤, 杨克军, 付健. 不同施氮水平对黑土区糯玉米灌浆期碳代谢的影响[J]. 作物杂志, 2025, (3): 178–184
[10] 李洪涛, 柴文波, 许瀚元, 李淑芬, 祝庆, 袁超, 王军. 不同鲜食糯玉米品种货架期评价及其鉴定指标筛选[J]. 作物杂志, 2025, (3): 241–248
[11] 张正洁, 杨国华, 郭瑞红, 程凯华, 米兴旺, 刘飞. 采用DTOPSIS法和隶属函数法对西北春玉米区域试验的综合评价[J]. 作物杂志, 2025, (3): 78–84
[12] 任永福, 李嘉怡, 陈国鹏, 蒲甜, 陈虹, 王小春. 不同栽培管理模式对带状套作玉米产量与效率的影响[J]. 作物杂志, 2025, (2): 101–108
[13] 常宏兵, 王晨, 何美敬, 曹熙敏, 俞凤芳, 曹晓良, 宋炜, 吕爱枝. 基于SSR标记对69份玉米种质资源的遗传多样性分析[J]. 作物杂志, 2025, (2): 47–53
[14] 陈虎, 高原, 孙家猛, 俞鹏, 肖洪武, 张海涛. 大麦典型硫氧还蛋白(TRX)基因家族鉴定与生物信息学分析[J]. 作物杂志, 2025, (2): 66–73
[15] 李文跃, 于滔, 曹士亮, 马雪娜, 唐贵, 高利, 杨耿斌. 基于SNP芯片对96份糯玉米自交系遗传多样性分析[J]. 作物杂志, 2025, (2): 74–78
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!