作物杂志,2025, 第6期: 3744 doi: 10.16035/j.issn.1001-7283.2025.06.005
刘松涛(
), 蒋超, 史涵博, 闫立楠, 赵海超, 卢海博, 栗慧, 黄智鸿(
)
Liu Songtao(
), Jiang Chao, Shi Hanbo, Yan Linan, Zhao Haichao, Lu Haibo, Li Hui, Huang Zhihong(
)
摘要:
为探究玉米(Zea mays L.)的耐旱机制,挖掘并应用耐旱基因以提高其耐旱性,基于前期挖掘到的玉米响应干旱胁迫的过氧化物酶基因ZmPOD,克隆该基因的cDNA,对编码蛋白的氨基酸序列进行生物信息学分析,通过评估干旱胁迫下拟南芥过表达株系的表型和生理生化指标,解析ZmPOD基因的功能。结果表明,ZmPOD基因全长1104 bp,编码367个氨基酸,与高粱中的过氧化物酶蛋白同源性最高。该基因启动子区域存在多个顺式作用元件,包括与植物应激反应、干旱和脱落酸响应相关的元件。干旱胁迫处理后,萌发期过表达拟南芥株系的根长显著高于野生型拟南芥(WT),幼苗期WT经干旱胁迫后出现枯萎表型甚至死亡,存活率低于过表达株系。此外,ZmPOD基因过表达株系的过氧化物酶和超氧化物歧化酶活性均高于WT,丙二醛含量则低于WT,表明过表达ZmPOD基因可增强植物对干旱胁迫的抗性。
| [1] | Aslam M, Maqbool M A, Cengiz R. Drought Stress in Maize (Zea mays L.). Switzerland:Springer, 2015. |
| [2] | 方缘, 张玉书, 米娜, 等. 干旱胁迫及补水对玉米生长发育和产量的影响. 玉米科学, 2018, 26(1):89-97. |
| [3] | 冯健英, 许洛, 王绍新, 等. 北方地区夏玉米主推品种的抗旱性研究. 安徽农业科学, 2015, 43(28):47-49. |
| [4] | 高志勇, 谢恒星, 李吉锋, 等. 玉米抗旱性鉴定指标及分子生物学机理研究. 陕西农业科学, 2017, 63(2):57-61. |
| [5] |
Miao Z Y, Han Z X, Zhang T, et al. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7:6950.
doi: 10.1038/s41598-017-04863-7 |
| [6] | Feller U, Vaseva I I. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science, 2014, 2:39. |
| [7] | FAO. How to Feed the World in 2050. (2009-10-08)[2024-07-22]. https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. |
| [8] | 李跃. 不同基因型玉米自交系对干旱胁迫的生理特性分析. 杨凌:西北农林科技大学, 2014. |
| [9] |
Passardi F, Longet D, Penel C, et al. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65(13):1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994 |
| [10] | Hiraga S, Sasaki K, Ito H, et al. A large family of class III plant peroxidases. Plant & Cell Physiology, 2001, 42(5):462-468. |
| [11] | Welinder K G. Plant peroxidases: structure function relationships. Geneva:University of Geneva, 1992. |
| [12] | Edwards S L, Raag R, Wariishi H, et al. Crystal structure of lignin peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(2):750-754. |
| [13] |
Smulevich G, Jakopitsch C, Droghetti E, et al. Probing the structure and bifunctionality of catalase-peroxidase (KatG). Journal of Inorganic Biochemistry, 2006, 100(4):568-585.
pmid: 16516299 |
| [14] |
Passardi F, Bakalovic N, Teixeira F K, et al. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics, 2007, 89(5):567-579.
pmid: 17355904 |
| [15] |
Skulachev V P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Letters, 1998, 423(3):275-280.
doi: 10.1016/s0014-5793(98)00061-1 pmid: 9515723 |
| [16] | Erman J E, Vitello L B. Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. Biochimica et Biophysica Acta, 2002, 1597(2):193-220. |
| [17] |
Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, et al. A new versatile peroxidase from Pleurotus. Biochemical Society Transactions, 2001, 29(2):116-122.
doi: 10.1042/bst0290116 |
| [18] |
Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 2009, 60(2):391-408.
doi: 10.1093/jxb/ern318 pmid: 19088338 |
| [19] |
Nair P M G, Chung I M. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biological Trace Element Research, 2014, 162(1/2/3):342-352.
doi: 10.1007/s12011-014-0106-5 |
| [20] |
Bindschedler L V, Dewdney J, Blee K A, et al. Peroxidase- dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal, 2006, 47(6):851-863.
doi: 10.1111/tpj.2006.47.issue-6 |
| [21] |
Fang Y J, You J, Xie K B, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC tran scription factor family in rice. Molecular Genetics and Genomics, 2008, 280(6):547-563.
doi: 10.1007/s00438-008-0386-6 |
| [22] | 蔡佳文. 泛素途径基因SorUBC和SorRma1在龙葵(Solanum nigrum L.)抗非生物胁迫中的作用研究. 哈尔滨:哈尔滨师范大学, 2017. |
| [23] | 吴梦露, 李鹏, 于文清, 等. 水稻防御酶与其抗病性关系研究进展. 分子植物育种, 2024, 22(7):2413-2420. |
| [24] | 徐建霞, 郑常祥. 玉米抗旱生理生化指标的研究进展. 农技服务, 2018, 35(4):33-35. |
| [1] | 王志, 周文丽, 赵耀, 刘正, 李从锋, 张仁和. 新型化控组合对玉米光合性能和产量提升的影响[J]. 作物杂志, 2025, (6): 112120 |
| [2] | 陈国立, 徐超峰, 魏常敏, 王茹茵, 张艳芳, 李豪远, 张军. 河南青贮玉米新品种基因型与环境互作效应分析[J]. 作物杂志, 2025, (6): 9199 |
| [3] | 周婷芳, 李冉, 刘倩倩, 张泽, 王振华, 马宝新, 路明, 张林, 韩业辉, 杨波, 李明顺, 张德贵, 翁建峰, 雍洪军, 徐晶宇, 韩洁楠, 李新海. 东北区118份玉米杂交种萌发期耐盐性分析[J]. 作物杂志, 2025, (5): 110 |
| [4] | 杨珂, 赖上坤, 金倩, 王卫军, 丁翊东, 刘晓飞. 玉米亚油酸合成相关基因的挖掘及转录调控机制研究[J]. 作物杂志, 2025, (5): 102112 |
| [5] | 王昌亮, 闫丽慧, 常建智, 张国合, 王静, 王芬霞, 黄利华. 玉米新品种浚单168的选育与创新思路[J]. 作物杂志, 2025, (5): 142146 |
| [6] | 朱建国, 崔正果, 张波, 王学端, 张月明, 吕小飞, 王洪预, 李秋祝, 崔金虎. 玉米―花生―谷子轮作对吉林省风沙盐碱地区土壤微生态、产量和效益的影响[J]. 作物杂志, 2025, (5): 1928 |
| [7] | 刘弟, 宋来贵, 田临卿, 李志刚, 马俊美, 李作森, 年夫照, 焦健, 邓小鹏. 烟后套作玉米对作物生产和土壤养分的影响[J]. 作物杂志, 2025, (5): 239246 |
| [8] | 孙宪印, 张继波, 吕广德, 亓晓蕾, 孙盈盈, 米勇, 牟秋焕, 尹逊栋, 王瑞霞, 钱兆国, 高明刚. 旱地与补灌条件下不同基因型小麦高产稳产性比较[J]. 作物杂志, 2025, (4): 104110 |
| [9] | 李喆豪, 姬米源, 吕梦, 明博, 李少昆, 张海艳, 谢瑞芝. 长期定位条件下不同氮肥运筹对春玉米根冠发育的影响[J]. 作物杂志, 2025, (4): 135141 |
| [10] | 王兴亚, 陈宇涵, 张孟雯, 孙琳琳, 陈利容, 郭玉秋, 龚魁杰. 不同时期施用脱落酸对玉米籽粒灌浆和脱水的影响[J]. 作物杂志, 2025, (4): 173180 |
| [11] | 贺新春, 杜何为, 黄敏. 玉米ZmCaM1基因的克隆和表达分析[J]. 作物杂志, 2025, (4): 1928 |
| [12] | 张智涵, 姚杰, 张占田, 卞福花, 张紫然, 陈平, 陈海宁, 刘保友. 5-氨基乙酰丙酸对干旱胁迫下黄瓜苗期生长和土壤酶活性的影响[J]. 作物杂志, 2025, (4): 245250 |
| [13] | 吴凤婕, 侯楠, 齐翔鲲, 杨克军, 付健, 王玉凤. 不同施氮量对半干旱区糯玉米主要营养品质及产量的影响[J]. 作物杂志, 2025, (4): 267275 |
| [14] | 史亚兴, 刘俊玲, 朱贵川, 赫忠友, 刘辉, 樊艳丽, 徐丽, 卢柏山, 赵久然, 骆美洁. du1新等位变异的克隆及其分子标记的开发[J]. 作物杂志, 2025, (4): 4148 |
| [15] | 侯岳, 王红亮, 李杰, 李春杰, 陈范骏. 禾本科与豆科饲草作物间套作对饲草品质及氮素吸收影响的研究进展[J]. 作物杂志, 2025, (3): 110 |
|
||