Crops ›› 2018, Vol. 34 ›› Issue (1): 118-125.doi: 10.16035/j.issn.1001-7283.2018.01.019

Previous Articles     Next Articles

Fractal Characteristics of Soil Particles and Their Effects on Physicochemical Properties of Tobacco Leaves in Main Tobacco Growing Areas in Henan

Liao Hongqu1,Chen Hongli1,Fan Wensi1,Chen Yu1,Han Qiujing1,Yu Jianjun1,Ma Ming2   

  1. 1 College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 Tobacco Standardization Research Center of China, Zhengzhou 450001, Henan, China
  • Received:2017-09-11 Revised:2017-10-30 Online:2018-02-20 Published:2018-08-24

Abstract:

In order to study the relationship between soil particle size and tobacco leaf quality in Henan tobacco area, 26 representative soil samples and flue-cured tobacco samples were taken from the main tobacco growing areas of Henan. The fractal model of soil quality was established and the soil fractal dimension D value of soil particle mass in plowlayer was calculated. By using multiple comparison, simple correlation analysis and path analysis, the correlation between soil fractal dimension and main physical properties and chemical composition of tobacco leaves were analyzed. The results showed that: ① The highest fractal dimension of soil in the main tobacco producing areas in Henan was Luoyang, which was 2.818, and the lowest was Zhumadian, 2.714, showing spatial heterogeneity. The soil fractal dimension was significantly positively correlated with clay particles, which was significantly negatively correlated with the coarse silt, which showed that the smaller the soil particles, the greater the soil clay, the greater the fractal dimension of soil. ② The weight of leaf weight was 0.2463 in tobacco physical characters, and was positively correlated with fractal dimension. The weight of nicotine in tobacco chemical characters was 0.2214, which was significantly negatively correlated with fractal dimension. ③ It was concluded that the suitable fractal dimension of Henan tobacco area was about 2.752, and the suitable fractal dimension could be cultivated by cultivation method.

Key words: Tobacco, Fractal dimensionality, Physical and chemical properties of tobacco leaves, Chemical composition

Table 1

Relationship between D value of fractal dimensionality and constitution of soil particles"

指标Index 粗砂粒Coarse sand 细砂粒Fine sand 粗粉粒Coarse silt 细粉粒Fine silt 黏粒Clay particles
相关系数Correlation coefficient -0.321 -0.029 -0.915** 0.467 0.990**

Fig.1

Relationship between D value of fractal dimensionality and soil particles"

Table 2

Soil particle size distribution and mass fractal dimensionality"

地区
Area
粗砂粒(g)
Coarse sand
细砂粒(g)
Fine sand
粗粉粒(g)
Coarse silt
细粉粒(g)
Fine silt
黏粒(g)
Clay particles
平均海拔(m)
Average altitude
分形维数
D value
平顶山Pingdingshan 6.86±2.24ab 4.61±0.90b 47.94±2.80b 20.54±2.10b 20.05±1.38b 144 2.752
许昌Xuchang 3.20±0.99b 11.97±1.58a 47.65±2.17b 16.96±1.59b 20.22±1.12b 100 2.748
三门峡Sanmenxia 1.30±0.60bc 4.78±1.27b 40.40±3.39bc 23.51±2.28ab 30.01±3.69a 572 2.814
驻马店Zhumadian 4.26±3.17b 1.02±0.35b 58.59±0.67a 20.20±0.04b 15.93±3.74b 98 2.714
信阳Xinyang 5.31±1.44b 2.76±0.64b 46.70±1.60b 28.13±1.73a 17.10±1.76b 79 2.735
南阳Nanyang 9.08±3.95a 3.24±0.77b 42.71±4.04bc 23.38±2.37ab 21.59±3.63ab 157 2.768
洛阳Luoyang 3.94±1.12b 1.99±0.44b 35.35±2.24c 29.26±1.12a 29.46±1.35a 418 2.818

Table 3

The characteristic、variance contribution rate and cumulative contribution rate of the principal component of physical properties for flue-cured tobacco leaves"

主成份
Principal
component
特征值
Characteristic
value
方差贡献率(%)
Variance contribution rate
累积贡献率(%)
Cumulative
contribution rate
1 2.805 35.061 35.061
2 1.349 16.859 51.920
3 1.136 14.201 66.122
4 0.745 9.312 75.434
5 0.554 6.923 82.357
6 0.539 6.743 89.100
7 0.498 6.222 95.321
8 0.374 4.679 100.000

Table 4

Initial factor load matrix in physical characteristics of tobacco leaves"

来源Source F1 F2 F3
X1 0.615 0.491 -0.138
X2 0.645 0.536 0.012
X3 0.747 -0.267 0.029
X4 -0.705 0.307 0.128
X5 0.534 0.219 0.640
X6 -0.010 0.593 -0.606
X7 -0.408 0.455 0.566
X8 0.710 -0.221 0.040

Table 5

Correlation coefficients between D value of fractal dimensionality and physical properties for flue-cured tobacco leaves"

作用因子
Influence factor
简单相关系数
Simple correlation
coefficient
直接作用系数
Direct correlation
coefficient
间接作用系数Indirect correlation coefficient
X1 X2 X3 X4 X5 X6 X7 X8 总和Sum
X1 -0.315** -0.828** 0.4360 0.1032 0.0380 0.0443 0.0608 0.0536 0.0645 0.8004
X2 -0.312** -0.806** 0.4479 0.0884 0.0603 0.0600 0.0612 0.0220 0.0690 0.8088
X3 -0.705** -0.335** 0.2550 0.2128 0.0985 0.0530 -0.0358 0.1008 0.1178 0.8020
X4 -0.623** -0.197 -0.1598 -0.2466 -0.1675 -0.0341 0.0145 -0.1059 -0.1185 -0.8180
X5 -0.358** -0.164 0.2236 0.2950 0.1082 0.0410 -0.0481 -0.0271 0.0725 0.6649
X6 -0.139 -0.373** 0.1350 0.1322 -0.0322 -0.0077 -0.0212 -0.0116 -0.0144 0.1801
X7 -0.538** -0.323** -0.1374 -0.0548 -0.1045 -0.0646 0.0138 0.0134 -0.0600 -0.3942
X8 -0.626** -0.249* 0.2145 0.2233 0.1585 0.0938 0.0477 -0.0216 0.0778 0.7939

Table 6

Multiple comparison of physical properties for flue-cured tobacco leaves in different D values"

分形维数
D value
抗张力(N)
Tensile stress
抗张强度(N/cm3)
Tensile strength
含梗率(%)
Stem ratio
单叶重(g)
Single leaf weight
叶质重(g/m2)
Leaf weight
填充值(g/cm3)
Filling value
叶片厚度(μm)
Leaf thickness
平衡含水率(%)
Quilibrium moisture content
2.5<D≤2.6 1.513b 118.103b 0.247bc 13.183a 71.310ab 5.107a 141.990a 9.327c
2.6<D≤2.7 2.030a 115.088b 0.218c 12.870a 64.428b 5.148a 120.458b 9.866c
2.7<D≤2.8 2.033a 140.270ab 0.277b 11.347b 71.082ab 5.653a 94.780c 10.226bc
2.8<D≤2.9 2.160a 137.906ab 0.337a 9.629c 74.374ab 5.143a 87.614c 11.243ab
>2.9 2.150a 156.108a 0.364a 9.540c 83.583a 4.939a 86.340c 12.399a

Table 7

The characteristic、variance contribution rate and cumulative contribution rate of the principal component of chemical composition for flue-cured tobacco leaves"

主成份
Principal
component
特征值
Characteristic
value
方差贡献率(%)
Variance contribution rate
累积贡献率(%)
Cumulative contribution rate
1 2.398 29.970 29.970
2 1.318 19.473 49.443
3 1.080 17.499 66.942
4 0.965 9.067 72.009
5 0.859 8.734 82.743
6 0.544 5.796 89.539
7 0.488 5.098 95.637
8 0.349 4.363 100.000

Table 8

Initial factor load matrix in chemical composition of tobacco leaves"

来源Source F1 F2 F3
x1 0.719 -0.192 0.443
x2 0.670 0.422 -0.033
x3 -0.838 0.034 0.082
x4 -0.300 -0.401 0.402
x5 -0.031 0.633 0.469
x6 0.334 0.009 -0.677
x7 0.007 0.667 0.036
x8 0.726 -0.310 0.185

Table 9

Correlation coefficients between D value of fractal dimensionality and main chemical composition for flue-cured tobacco leaves"

作用因子
Influence factor
简单相关系数
Simple correlation
coefficient
直接作用系数
Direct correlation
coefficient
间接作用系数Indirect correlation coefficient
x1 x2 x3 x4 x5 x6 x7 x8 总和Sum
x1 -0.596** -0.246 0.0477 -0.3000 0.0024 0.0002 -0.0027 0.0002 -0.0540 -0.3063
x2 -0.496** -0.156 -0.0750 -0.2370 -0.0160 -0.0103 -0.0280 -0.0074 -0.0335 -0.4072
x3 -0.799** -0.565 -0.1306 0.0654 0.0150 -0.0032 0.0374 0.0002 -0.0335 0.2119
x4 -0.221* -0.064 -0.0091 0.0393 0.1328 0.0002 0.0022 0.0044 0.0112 0.1810
x5 -0.040 -0.059 -0.0010 -0.0271 0.0305 -0.0002 0.0113 -0.0074 0.0126 0.0207
x6 -0.332** -0.130 -0.0052 -0.0335 -0.1627 -0.0011 0.0051 0.0001 -0.0088 -0.2062
x7 -0.073 -0.056 -0.0007 -0.0207 0.0017 -0.0050 -0.0078 0.0001 0.0141 -0.0170
x8 -0.520** -0.109 -0.1213 -0.0479 -0.2656 -0.0066 0.0068 -0.0105 0.0072 -0.4378

Table 1

0 Multiple comparison of main chemical composition for flue-cured tobacco leaves of different D values %"

分形维数
D value
总氮
Total nitrogen
烟碱
Nicotine
总糖
Total sugar
还原糖
Reducing sugar
淀粉
Starch

Potassium

Chlorine
石油醚提取物
Petroleum ether extract
2.5<D≤2.6 1.913a 2.023a 22.042c 19.077a 4.133a 1.65a 0.290a 8.273a
2.6<D≤2.7 1.762a 2.034a 23.361c 21.204a 5.168a 1.48a 0.322a 8.504a
2.7<D≤2.8 1.551b 1.736ab 25.053b 21.548a 4.967a 1.67a 0.359a 6.960b
2.8<D≤2.9 1.393bc 1.483b 29.577a 22.054a 5.097a 1.33a 0.303a 6.483b
>2.9 1.328c 1.361b 32.281a 23.419a 4.384a 1.24a 0.303a 6.149b
[1] 姚晶晶, 张洪江, 张友焱 , 等. 晋西黄土丘陵区不同植物群落的土壤分形特征. 中国水土保持科学, 2014(5):23-29.
[2] 刘淑娟, 刘世增, 袁宏波 , 等. 石羊河尾闾-青土湖水面形成对土壤分形维数和植被的影响. 水土保持研究, 2015(6):83-88.
[3] 程冬兵, 蔡崇法, 彭艳平 , 等. 根据土壤粒径分形估计紫色土水分特征曲线. 土壤学报, 2009(1):30-36.
[4] 张耸, 李莉, 马一琼 , 等. 不同类型植烟土壤养分含量、微生物数量与酶活性研究. 中国农学通报, 2016(35):105-110.
[5] 施河丽, 向必坤, 彭五星 , 等. 调节植烟土壤酸度防控烤烟青枯病. 中国烟草学报, 2015(6):50-53.
[6] 陈敏, 杜相革 . 生物炭对土壤特性及烟草产量和品质的影响. 中国土壤与肥料, 2015(1):80-83.
doi: 10.11838/sfsc.20150115
[7] 高林, 董建新, 武可峰 , 等. 土壤类型对烟草生长发育的影响研究进展. 中国烟草科学, 2012(1):98-101.
doi: 10.3969/j.issn.1007-5119.2012.01.021
[8] 王卫, 梁振飞, 李菊梅 , 等. 土壤性质对烟草中镉富集的影响及预测模型研究. 土壤, 2014(1):178-183.
[9] 李强, 张一扬, 陈丽鹃 , 等. 植烟土壤颗粒分形特征及与主要养分的关系. 烟草科技, 2015(4):13-18.
doi: 10.16135/j.issn1002-0861.20150403
[10] NY/T 1121.3-2006土壤检测第3部分:土壤机械组成的测定. 北京:中国农业出版社, 2006: 1-9.
[11] 中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978: 469-510.
[12] 阎克玉, 王海燕, 李兴波 , 等. 烤烟国家标准(40级)河南烟叶叶片厚度、叶质重及叶片密度研究. 郑州轻工业学院学报, 1999(2):47-52.
doi: 10.3969/j.issn.1004-1478.1999.02.013
[13] 吉书文, 腾兆波 . 烟草物理检测. 郑州: 河南科学技术出版社, 1997.
[14] 阎克玉, 刘江豫, 徐传贵 . 烤烟国家标准(40级)烟叶平衡含水率测定报告. 烟草科技, 1993(2):16-19.
[15] 包自超, 宋文静, 徐宜民 , 等. 烤烟上部叶片质量指标间的相关性研究. 中国烟草科学, 2013(5):23-27.
doi: 10.3969/j.issn.1007-5119.2013.05.005
[16] YC-T31-1996烟草及烟草制品:试样的制备和水分测定-烘箱法. 北京: 中国标准出版社, 1996.
[17] 杜瑞华, 周明松 . 连续流动分析法在烟草分析中的应用. 中国测试技术, 2007,33(3):76-78.
doi: 10.3969/j.issn.1674-5124.2007.03.026
[18] 杨培岭, 罗远培, 石元春 . 用粒径的重量分布表征的土壤分形特征. 科学通报, 1993(20):1896-1899.
[19] 邓良基, 林正雨, 高雪松 , 等. 成都平原土壤颗粒分形特征及应用. 土壤通报, 2008,39(1):38-42.
doi: 10.3321/j.issn:0564-3945.2008.01.007
[20] 王贤, 张洪江, 程金花 , 等. 重庆四面山几种林地土壤颗粒分形特征及其影响因素. 水土保持学报, 2011,25(3):154-159.
[21] 马云, 何丙辉, 何建林 , 等. 三峡库区皇竹草植物篱对坡面土壤分形特征及可蚀性的影响. 水土保持学报, 2011(4):79-82,87.
[22] 慈恩, 杨林章, 程月琴 , 等. 不同耕作年限水稻土土壤颗粒的体积分形特征研究. 土壤, 2009(3):396-401.
doi: 10.3321/j.issn:0253-9829.2009.03.012
[23] 孙改清, 李素英, 赵园园 , 等. 锡林浩特土壤颗粒分形特征与草原植物生物量的相关性研究. 资源科学, 2016(6):1065-1074.
[24] 柳妍妍, 胡玉昆, 公延明 . 高寒草原不同退化阶段土壤颗粒分形特征. 水土保持通报, 2013(5):138-142,184.
[25] 夏江宝, 张淑勇, 王荣荣 , 等. 贝壳堤岛3种植被类型的土壤颗粒分形及水分生态特征. 生态学报, 2013(21):7013-7022.
[26] 张季如, 朱瑞赓, 祝文化 . 用粒径的数量分布表征的土壤分形特征. 水利学报, 2004(4):67-71,79.
[27] 李强, 李志伟, 王全 , 等. 云南陆良植烟土壤粒径分布及其分形维数空间变异研究. 山地学报, 2017(1):23-31.
doi: 10.16089/j.cnki.1008-2786.000192
[28] 郭群召 . 氮及土壤氮素矿化对烤烟生长及品质的影响. 郑州:河南农业大学, 2004.
[29] 曹志洪, 李仲林, 周秀如 . 烤烟干物质的累积及土壤环境对烟碱含量的影响. 烟草科技, 1989(5):29-33.
[30] 叶协锋 . 河南省烟草种植生态适宜性区划研究. 杨凌:西北农林科技大学, 2011.
[31] 邓小华, 石楠, 周米良 , 等. 不同种类绿肥翻压对植烟土壤理化性状的影响. 烟草科技, 2015,48(2):7-10,20.
doi: 10.16135/j.issn1002-0861.20150202
[32] 朱姝, 窦森, 陈丽珍 . 秸秆深还对土壤团聚体中胡敏酸结构特征的影响. 土壤学报, 2015,52(4):747-758.
[1] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[2] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
[3] Yaning Wang,Jinpeng Yang,Chunlei Yang,Fangsen Xu,Xiang Zhang,Liang Li. Effects of Well-Cellar Transplanting with Triangulation on Growth, Development,Yield and Quality of Burley Tobacco [J]. Crops, 2018, 34(3): 116-122.
[4] Bingfei Zhao,Shuang Sun,Zhenwu Hou,Yunpeng Fu,Quanshan Fu,Yongfeng Yang,Jing Wang,Yongcheng Huang. Effects of Different Ratio of N to K on Carbon-Nitrogen Metabolism and Chemical Constituents of Dark Sun-Cured Tobacco [J]. Crops, 2018, 34(2): 73-79.
[5] Siyu Gong,Sirong Zhong,Shichuan Zhang,Yaping Nie,Xihuan Liang,Shuaiqiang Yang,Qiyuan Liu. Effects of Biochar on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2018, 34(2): 154-160.
[6] Jie Xu,Lei Pan,Shuai Yang,Yunsong Chen,Shengbin Deng,Xiaodong Yang,Wenguang Ma. Analysis of Genetic Effects of Potassium Content in Flue-Cured Tobacco [J]. Crops, 2018, 34(2): 30-34.
[7] Linjian Dai,Wu Chen,Tian Zhou,Jun Zhong. Selection Mutant of Resistant to Black Shank on Tobacco by Anther Culture [J]. Crops, 2018, 34(1): 66-70.
[8] Liangmu Li,Yikuan Fan,Zicheng Xu. Research Progress of the Effects of Molybdenum Nutrition on Tobacco Quality [J]. Crops, 2017, 33(6): 12-16.
[9] Han Yan,Hanglin Song,Li Zhang,Jing Yan,Xianji Shi,Shimiao Zhu,Lu Liu,Hulin Li. Effects of Cadmium Stress on Agronomic Traits and Physiological and Biochemical Indexes of Flue-Cured Tobacco [J]. Crops, 2017, 33(5): 156-161.
[10] Liuya Huang,Yongbo Sun,Shuwu Liu,Yonghui Zhang,Fuzhao Nian,Yong Gu. Research Advance of the Effects of Biochar onthe Main Properties of Soil and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2017, 33(4): 15-20.
[11] Qingli Liu,Zhihong Li,Yanli Xu,Junying Li,Yungui Zhang. Research on the Cooperative Technology of Flue-Cured Tobacco based on Transplanting-Date, Fertilization and Variety in Yunnan [J]. Crops, 2016, 32(6): 128-134.
[12] Qiang Hu,Baofeng Jin,Pufan Zheng,Fucai Chen,Sitong Li,Kailun Mao,Hailun Liu,Yonghong Tang,Lixin Zhang. Effects of Exogenous GA3 and IAA on Quality of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi Province [J]. Crops, 2016, 32(6): 135-141.
[13] Pingping Chen,Jing Yang,Juan Li,Naimei Tu,Zhenxie Yi. Study on Interaction Effects of Fertilizer and Density on Late Rice after Tobacco in Tobacco-Rice Rotation System in Changsha Tobacco Area [J]. Crops, 2016, 32(6): 79-84.
[14] . [J]. Crops, 2013, 29(3): 32-35.
[15] . [J]. Crops, 2013, 29(3): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .