Crops ›› 2017, Vol. 33 ›› Issue (2): 59-66.doi: 10.16035/j.issn.1001-7283.2017.02.010

Previous Articles     Next Articles

Canonical Correlation Analysis between RVA Profile Characteristics and Quality Traits of Japonica Rice Varieties

Cheng Haitao,Ma Zhaohui,Liu Guilin,Cao Ping,Lü Wenyan   

  1. Agronomy College, Shenyang Agricultural University/Key Laboratory of Rice Biology and Breeding,Ministry of Agriculture/Key Laboratory of Northern Japonica Super Rice Breeding,Ministry of Education,Shenyang 110866,Liaoning,China
  • Received:2016-11-24 Revised:2017-01-22 Online:2017-04-15 Published:2018-08-26
  • Contact: Wenyan Lü

Abstract:

The correlation of several kinds of quality traits were analyzed with rice varieties suitable for Liaoning area using factor analysis and canonical correlation analysis. The main factor effects of all kinds of quality characters and the relationship between the starch RVA profile characteristics and other quality traits were studied. The results showed that the multiple RVA profile characteristics were significantly correlated. Amylose content and taste value was correlated with chalkiness negatively. The taste value was negatively correlated with protein content. Multiple RVA profile characteristics had significant correlation with some quality traits such as chalkiness, amylose content and taste value. Factor analysis showed that the RVA profile characteristics could be divided into process factor (hot paste viscosity, breakdown, cool paste viscosity, setback, peak time) and denaturation factor (peak viscosity and pasting temperature). Quality traits could be divided into chalkiness factor, milling factor and taste factor. Process factor and chalkiness factor variation contributed most. Three typical related variables were detected in canonical correlation analysis between RVA profile characteristics and other quality traits. The relationship between the cool paste viscosity and other quality traits most closely, followed by hot viscosity, breakdown and setback. The correlation between the quality traits and the RVA profile characteristics were highest, followed by amylose content. In addition, protein content and taste value had a significant correlation with RVA profile characteristics. The results of this study further clarify the relationship between RVA profile characteristics and quality of japonica rice in Liaoning province and its important role in the evaluation of rice quality, which provided theoretical basis for the quality breeding of rice in this region.

Key words: Japonica rice, RVA profile characteristics, Quality traits, Canonical correlation analysis

Table 1

RVA profile characteristics and quality traits of japonica rice variety resources"

性状Trait 平均值
Mean
标准差
SD
峰度
Kurtosiss
偏度
Skewnes
最小值
Min
最大值
Max
变异系数
CV(%)
峰值黏度Peak viscosity (cP) 2 887.94 369.46 0.68 -0.25 1 498.00 3 955.00 0.13
热浆黏度Hot paste viscosity (cP) 1 253.65 306.26 1.20 -0.15 136.50 2 155.50 0.24
崩解值Breakdown (cP) 1 637.91 318.13 1.23 0.91 947.50 2 806.50 0.19
冷胶黏度Cool paste viscosity (cP) 2 738.71 451.07 5.16 -1.35 450.50 3 737.00 0.16
回复值Setback (cP) 1 488.91 195.51 11.19 -2.21 323.00 2 052.50 0.13
峰值时间Peak time (min) 5.94 0.35 26.95 -4.05 3.27 6.46 0.06
糊化温度Pasting temperature (℃) 70.09 2.50 3.33 1.69 65.38 78.45 0.04
糙米率Brown rice percentage (%) 81.37 2.20 17.67 -2.39 64.16 88.83 0.03
精米率Milled rice percentage (%) 73.56 3.06 7.63 -1.21 56.43 85.90 0.04
整精米率Head rice percentage (%) 69.67 5.19 31.88 -4.01 22.77 79.70 0.07
白度值Whiteness value 22.14 1.84 0.35 0.28 18.00 28.30 0.08
垩白粒率Chalkiness rate (%) 8.34 10.43 13.90 3.38 0.00 73.90 1.25
垩白度Chalkiness degree 4.62 6.38 18.00 3.80 0.00 49.40 1.38
直链淀粉含量Amylose content (%) 14.12 3.33 1.02 -1.23 4.89 18.90 0.24
蛋白质含量Protein content (%) 8.97 0.82 1.94 0.37 6.45 12.60 0.09
食味值Taste value 69.36 12.54 2.13 -0.80 11.90 96.90 0.18

Table 2

Correlation coefficient among RVA profile characteristics of japonica rice variety resources"

峰值黏度
Peak viscosity
热浆黏度
Hot paste viscosity
崩解值
Breakdown
冷胶黏度
Cool paste viscosity
回复值
Setback
峰值时间
Peak time
热浆黏度(cP)Hot paste viscosity 0.560**
崩解值(cP)Breakdown 0.611** -0.309**
冷胶黏度(cP)Cool paste viscosity 0.459** 0.935** -0.366**
回复值(cP)Setback 0.177** 0.596** -0.362** 0.834**
峰值时间(min)Peak time 0.172* 0.746** -0.515** 0.833** 0.745**
糊化温度(℃)Pasting temperature 0.355** -0.051 0.450** -0.034 -0.009 -0.208**

Table 3

Correlation coefficient among quality traits of japonica rice variety resources"

糙米率
Brown rice
percentage
精米率
Milled rice
percentage
整精米率
Head rice
percentage
白度值Whiteness
value
垩白粒率Chalkiness
rate
垩白度Chalkiness
degree
直链淀粉含量
Amylose content
蛋白质含量Protein content
精米率Milled rice percentage 0.936**
整精米率Head rice percentage 0.424** 0.466**
白度值Whiteness value 0.093 0.052 -0.007
垩白粒率Chalkiness rate 0.029 -0.008 -0.012 0.618**
垩白度Chalkiness degree 0.024 -0.009 -0.002 0.636** 0.991**
直链淀粉含量Amylose content -0.176 -0.210 -0.011 -0.146 -0.325* -0.360**
蛋白质含量Protein content -0.004 -0.056 0.034 0.054 -0.054 -0.066 0.128
食味值Taste value -0.092 -0.057 -0.040 -0.396** -0.333** -0.315** 0.323 -0.479**

Table 4

Correlation coefficient between RVA profile characteristics and quality traits of japonica rice variety resources"

糙米率
Brown rice percentage
精米率
Milled rice percentage
整精米率
Head rice percentage
白度值
Whiteness value
垩白粒率Chalkiness rate 垩白度
Chalkiness degree
直链淀粉含量
Amylose content
蛋白质含量
Protein content
食味值
Taste
value
峰值黏度Peak viscosity 0.078 0.035 -0.019 0.186** -0.076 -0.052 0.156 -0.172* 0.240
热浆黏度Hot paste viscosity 0.014 0.044 -0.004 -0.058 -0.297** -0.301** 0.453** 0.020 0.297*
崩解值Breakdown 0.076 -0.002 -0.019 0.260** 0.194** 0.225** -0.188 -0.212** -0.009
冷胶黏度Cool paste viscosity 0.004 0.049 0.029 -0.157* -0.366** -0.382** 0.593** 0.009 0.377**
回复值Setback -0.015 0.041 0.079 -0.284** -0.384** -0.416** 0.670** -0.017 0.453**
峰值时间Peak time -0.029 0.024 0.011 -0.233** -0.230** -0.258** 0.418** 0.092 0.148
糊化温度Pasting temperature 0.051 -0.031 -0.132 0.366** 0.141* 0.128 0.263* -0.008 -0.184

Table 5

Factors load matrix of the RVA profile characteristics in japonica rice variety resources"

因子1
Facter1
因子2
Facter2
峰值黏度Peak viscosity -0.213 0.928
热浆黏度Hot paste viscosity 0.866 0.443
崩解值Breakdown -0.825 0.420
冷胶黏度Cool paste viscosity 0.913 0.400
回复值Setback 0.835 0.264
峰值时间Peak time 0.966 -0.049
糊化温度Pasting temperature -0.560 0.628
特征值Characteristic value 4.256 1.839
因子贡献率Factor contribution rate (%) 60.80 26.27
累计贡献率Accumulative contribution rate (%) 60.80 87.07

Table 6

Factors load matrix of the quality traits in japonica rice variety resources"

因子1
Facter1
因子2
Facter2
因子3
Facter3
糙米率(%)
Brown rice percentage
0.353
0.798
0.012
精米率(%)
Milled rice percentage
0.336
0.882
0.202
整精米率(%)
Head rice percentage
-0.118
0.759
0.308
白度值
Whiteness value
0.775
-0.250
0.135
垩白粒率(%)
Chalkiness rate
0.928
-0.233
0.138
垩白度
Chalkiness degree
0.929
-0.222
0.177
直链淀粉含量(%)
Amylose content
-0.668
-0.120
-0.088
蛋白质含量(%)
Protein content
0.033
0.297
-0.901
食味值
Taste value
-0.474
-0.090
0.659
特征值
Characteristic value
3.253
2.266
1.458
因子贡献率(%)
Factor contribution rate
36.15
25.18
16.20
累计贡献率(%)
Accumulative contribution rate
36.15
61.33
77.54

Table 7

Significant test results of canonical correlation coefficient"

No. 相关系数
Correlation coefficient
卡方值
χ2 value
自由度
df
P值
Pvalue
1 0.911 148.518 63 0.000
2 0.751 83.757 48 0.001
3 0.742 53.498 35 0.023
4 0.605 24.319 24 0.443
5 0.399 7.685 15 0.936
6 0.164 1.372 8 0.995
7 0.101 0.374 3 0.946

Table 8

Canonical variable composition with significant correlation between RVA profile characteristics and quality traits"

典型变量分组
Canonical variable group
相关系数
Correlation coefficient
解释率
Contribution rate
典型变量的构成
Composition of canonical variables
1
0.911
33.43
26.27
U1=0.305X1-1.606X2-0.244X3+1.704X4+0.356X5+0.241X6+0.303X7
V1=0.399Y1+0.368Y2-0.143Y3-0.209Y4+0.183Y5+1.669Y6-2.575Y7-0.084Y8+0.027Y9
2
0.751
31.64
7.17
U2=0.376X1-2.515X2-3.324X3+3.649X4-0.240X5-0.093X6+0.361X7
V2=1.420Y1-0.467Y2+0.892Y3+0.236Y4+0.662Y5-1.331Y6+0.895Y7-0.689Y8-0.376Y9
3
0.742
3.13
7.05
U3=-1.103X1+1.765X2+3.777X3-6.119X4+4.426X5-2.608X6-0.984X7
V3=-0.375Y1-0.166Y2+0.492Y3-0.042Y4+0.075Y5+0.898Y6-0.420Y7-0.985Y8+1.693Y9
[1] 黄发松, 孙宗修, 胡培松 , 等. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998,12(3):172-176.
[2] 万向元, 陈亮明, 王海莲 , 等. 水稻品种胚乳淀粉RVA谱的稳定性分析. 作物学报, 2004,30(12):1185-1191.
[3] 隋炯明, 李欣, 严松 , 等. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663.
[4] 胡培松, 翟虎渠, 唐绍清 , 等. 利用RVA快速鉴定稻米蒸煮及食味品质的研究. 作物学报, 2004,30(6):519-524.
doi: 10.3321/j.issn:0496-3490.2004.06.001
[5] 贾良, 丁雪云, 王平荣 , 等. 稻米淀粉RVA谱特征及其与理化品质性状相关性的研究. 作物学报, 2008,34(5):790-794.
doi: 10.3724/SP.J.1006.2008.00790
[6] 李刚, 邓其明, 李双成 , 等. 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009,23(1):99-102.
[7] 舒庆尧, 吴殿星, 夏英武 , 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31(3):25-29.
[8] 吴殿星, 舒庆尧, 夏英武 . RVA 分析辅助选择食用优质早籼稻的研究. 作物学报, 2001,27(2):165-172.
doi: 10.3321/j.issn:0496-3490.2001.02.005
[9] 何秀英, 程永盛, 刘志霞 , 等. 国标优质籼稻的稻米品质与淀粉RVA谱特征研究. 华南农业大学学报, 2015,36(3):37-44.
doi: 10.7671/j.issn.1001-411X.2015.03.007
[10] 张欣, 施利利, 丁得亮 , 等. 稻米蛋白质相关性状与RVA特征谱及食味品质的关系. 食品科技, 2014,39(10):188-191.
[11] 陈书强 . 粳稻米蒸煮食味品质与其他品质性状的典型相关分析. 西北农业学报, 2015,24(1):60-67.
doi: 10.7606/j.issn.1004-1389.2015.01.011
[12] 李先喆, 徐庆国, 刘红梅 . 不同地域水稻的RVA谱特征值及其与蛋白质含量的关系. 湖南农业大学学报(自然科学版), 2016,42(1):1-5.
[13] 谢黎虹, 杨仕华, 陈能 , 等. 不同生态条件下籼稻米饭质地和淀粉RVA谱的特性. 作物学报, 2006,32(10):1479-1484.
doi: 10.3321/j.issn:0496-3490.2006.10.009
[14] 包劲松, 夏英武 . 稻米淀粉RVA谱的基因型×环境互作效应分析. 中国农业科学, 2001,34(2):123-127.
[15] 李敏, 张洪程, 李国业 , 等. 生育类型与施氮水平对粳稻淀粉RVA谱特性的影响. 作物学报, 2012,38(2):293-300.
doi: 10.3724/SP.J.1006.2012.00293
[16] 邓飞, 王丽, 叶德成 , 等. 生态条件及栽培方式对稻米RVA谱特性及蛋白质含量的影响. 作物学报, 2012,38(4):717-724.
doi: 10.3724/SP.J.1006.2012.00717
[17] 叶全宝, 张洪程, 李华 , 等. 施氮水平和栽插密度对粳稻淀粉RVA 谱特性的影响. 作物学报, 2005,31(1):124-130.
[18] 王丰, 程方民, 钟连进 , 等. 早籼稻米RVA谱特性的品种间差异及其温度效应特征. 中国水稻科学, 2003,17(4):328-332.
[19] Zhao Q Y, Zhang Y D, Zhu Z , et al. Effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of rice (Oryza sativa, L.japonica). Agricultural Science & Technology, 2015,16(3):607-614.
[20] Zhu Z, Zhao Q Y, Zhang Y D , et al. Effects of different sowing dates and sites on grain quality and RVA profile of Nanjing 46,a popular cultivar of japonica rice (Oryza sativa L.). Agricultural Science & Technology, 2014,15(11):1946-1952.
[21] 龚金龙, 邢志鹏, 胡雅杰 , 等. 籼、粳超级稻主要品质性状和淀粉RVA谱特征的差异研究. 核农学报, 2015,29(7):1374-1385.
doi: 10.11869/j.issn.100-8551.2015.07.1374
[22] 朱满山, 顾铭洪, 汤述翥 . 不同粳稻品种和DH群体稻米淀粉RVA谱特征与蒸煮理化指标及相关分析. 作物学报, 2007,33(3):411-418.
[23] Wang X Q, Yin L Q, Shen G Z , et al. Determination of amylose content and its relationship with RVA profile within genetically similar cultivars of Rice (Oryza sativa L.ssp.japonica). Agricultural Sciences in China, 2010,9(8):1101-1107.
doi: 10.1016/S1671-2927(09)60196-6
[24] 赵镛洛, 张云江, 王继馨 , 等. 北方早粳稻米品质因子分析. 作物学报, 2001,27(4):538-540.
[25] 朱振华, 蒋志农, 赵国珍 , 等. 云南高原粳稻品质性状因子及品种聚类分析. 江西农业大学学报, 2008,30(4):194-198.
doi: 10.3969/j.issn.1000-2286.2008.02.002
[26] 周鸿凯, 曹珠平, 叶昌 , 等. 杂交水稻产量性状和品质性状的因子分析. 热带作物学报, 2009,30(2):147-152.
doi: 10.3969/j.issn.1000-2561.2009.02.006
[1] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[2] Huijuan Tang,Gonggu Zang,Chaohua Cheng,Qing Tang,Yujun Li,Lining Zhao. Correspondence Analysis of Yield and Quality Traits of Industrial Hemp (Cannabis sativa L.) [J]. Crops, 2018, 34(2): 52-55.
[3] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China [J]. Crops, 2018, 34(1): 147-151.
[4] Xijuan Zhang,Yongcai Lai,Ying Meng,Fengming Zhang,Ao Tang,Wenjun Dong,Chunxu Leng,Youhong Liu,Qi Wang. Effects of Planting Patterns on Growth, Yield and Temperature Utilization of Japonica Rice in Cold Region [J]. Crops, 2017, 33(5): 124-128.
[5] Jizhen Yu,Rui Wang,Pengjie Zhan,Jun'ai Ping,Fuyao Zhang. Diversity of Agronomic and Quality Traits of Major Sorghum Hybrids in China [J]. Crops, 2017, 33(5): 49-54.
[6] Ximing Xu,Xin Zhang,Lili Shi,Jing Cui,Deliang Ding,Hongyan Qu,Shouxian Gu,Yongjie Li. Evaluation of Rice Quality with Low Amylose Content in Hybrid Japonica Rice Combinations [J]. Crops, 2016, 32(6): 44-48.
[7] Bing Duan,Qingshan Liu,Du Liang,Fengxia Yan,Qi Guo. Analysis on the Combining Ability of Quality Traits in Forage Sorghum [J]. Crops, 2016, 32(1): 51-55.
[8] Liqiang Dong,Jing Ye,Shu Wang,Baoyan Jia,Yuancai Huang,Yan Wang. Effects of Sowing Rate on Yield and Photosynthetic Characteristics of Drill-Seeded Japonica Rice in North Cold Region [J]. Crops, 2016, 32(1): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .