Crops ›› 2021, Vol. 37 ›› Issue (2): 28-34.doi: 10.16035/j.issn.1001-7283.2021.02.004

;

Previous Articles     Next Articles

Status and Trend Analysis of Buckwheat Variety Improvement and Industrial Development

Yang Chongqing1,2(), Chang Keqin1,2(), Mu Lanhai1, Du Yanping1, Zhang Jiupan1, Li Yaodong1, Zhang Xiaojuan1   

  1. 1Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, Ningxia, China
    2Dry Farming Agricultural Engineering Technology Research Center of Ningxia, Guyuan 756000, Ningxia, China
  • Received:2020-06-06 Revised:2020-07-24 Online:2021-04-15 Published:2021-04-16
  • Contact: Chang Keqin E-mail:nxnlkxyycq@163.com;nxgychkq@163.com

Abstract:

According to the current situation and problems of buckwheat production at home and abroad, the development trend of the future buckwheat industry, the direction of variety improvement, and the development of variety selection technology of buckwheat were discussed. In recent years, the area of buckwheat cultivation has been increasing steadily and buckwheat consumption is on the rise worldwide. The poor production conditions, low yield, difficult variety improvement, and unsuitable mechanized production are common problems in the production of buckwheat. Therefore, wide-ranging, efficient, high-quality, and high-yield characteristics are the goals of the improvement of buckwheat varieties. The combination of cross-breeding and molecular breeding technology will be the main means to improve buckwheat varieties in the future.

Key words: Buckwheat, Production, Breeding technology, Industry, Trend

Fig.1

Buckwheat planting area, yield and yield per unit area in 2009-2018 in China and some countries Data from Food and Agriculture Organization of the United Nations (FAO)[7], the same below"

Fig.2

Buckwheat import and export amount of China and some countries in 2008-2017"

Fig.3

Planting area, total output and yield per unit area of buckwheat, wheat, rice and millet in China since 1960 The dates of rice and wheat in figure (a) and (b) are based on the secondary axis"

Fig.4

Buckwheat planting area (Ⅰ), production (Ⅱ) and yield per unit area (Ⅲ) of main buckwheat producing countries in Europe, America (A) and Asia (B) in 1961-2018 Russia in A-Ⅰ and A-Ⅱ, China and Kazakhstan in B-Ⅰ and B-Ⅱ, and France in A-Ⅲ are based on the secondary axis"

Fig.5

Breeding methods of buckwheat varieties approved by the state from 2000 to 2015 (a) and provincial level from 1985 to 2015 (b) Data from reference [21]"

[1] Zhou M L, Ivan K, Sun H W, et al. Molecular Breeding and Nutritional Aspects of Buckwheat. New York: Academic Press, 2016.
[2] Joshi D C, Chaudhari G V, Sood S, et al. Revisiting the versatile buckwheat:reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 2019,250(3):783-801.
[3] Dol R L, Mohan S, Pramod K J, et al. An overview:distribution,production,and diversity of local landraces of buckwheat in Nepal. Advances in Agriculture, 2017(2):1-6.
[4] 刘慧, 周向阳. 基于需求视角的我国杂粮主食化发展分析. 中国食物与营养, 2016,22(8):17-20.
[5] 高瑞红, 徐嘉, 刘玉红. 中国荞麦的育种现状与展望. 农业开发与装备, 2018(10):99.
[6] 南成虎, 穆志新, 张晋. 加拿大荞麦产业化发展概况. 山西农业科学, 2015,43(1):124-126.
[7] 联合国粮食及农业组织. [2020-04-10]. http://www.fao.org/home/zh.
[8] 李元鑫, 张蕙杰, 麻吉亮, 等. 世界和中国杂粮供需及贸易展望. 农业展望, 2019,15(10):4-12.
[9] 曹丽霞, 赵世锋, 周海涛, 等. 冀北荞麦产业现状与发展建议. 中国种业, 2019(6):10-12.
[10] 肖国樱, 肖友伦, 李锦江, 等. 高效是当前水稻育种的主导目标. 中国水稻科学, 2019,33(4):287-292.
[11] 汪燕, 梁成刚, 孙艳红, 等. 不同苦荞品种的产量与品质及其对低氮的响应. 贵州师范大学学报(自然科学版), 2017,35(6):66-73.
[12] 汪燕, 廖凯, 喻武鹃, 等. 苦荞耐低磷力鉴定及其产量和品质分析. 江苏农业学报, 2018,34(3):503-510.
[13] 卢文洁, 李春花, 王艳青, 等. 荞麦轮纹病抗性鉴定方法的建立及荞麦抗病种质资源的筛选. 中国农学通报, 2017,33(12):98-102.
[14] 彭国照, 曹艳秋, 阮俊. 基于气候多因子权重相似性的凉山州春苦荞气候适应性区划. 西南大学学报(自然科学版), 2016,38(1):1-8.
[15] 李秀莲, 史兴海, 高伟, 等. 苦荞新品种‘晋荞麦2号’丰产稳产性分析及应用前景. 农学学报, 2011,1(12):6-10.
[16] 华劲松. 凉山州苦荞麦新品系产量性能及稳定性分析. 种子, 2012,31(10):100-101,104.
[17] 史兴海, 李秀莲, 高伟, 等. 高黄酮苦荞资源筛选试验. 现代农业科技, 2013(9): 51, 53.
[18] 章洁琼, 邹军, 卢扬, 等. 不同荞麦品种主要功能成分分析及评价. 种子, 2020,39(2):107-112,117.
[19] Subhash B, Yadav G S, Raghavendra S, et al. Production technology and multifarious uses of buckwheat (Fagopyrum spp.):A review. Indian Journal of Agronomy, 2018,63(4):415-427.
[20] Fesenko A N, Fesenko I N. Buckwheat breeding and production in Russia during the past 100 years. Proceedings on Applied Botany,Genetics and Breeding, 2019,180(1):113-117.
[21] 赵建栋, 李秀莲, 陈稳良, 等. 我国荞麦育种成就、问题及对策. 种子, 2017,36(4):67-71.
[22] Campbell C. Buckwheat crop improvement. Fagopyrum, 2003,20:1-6.
[23] Fesenko A N, Shipulin O A, Fesenko I N. Prospects of using the lsb mutation in breeding of determinate buckwheat cultivars. Russian Agricultural Sciences, 2011,37(3):197-200.
[24] 南成虎, 师颖, 曹丽萍. 甜荞育种趋势与发展动态. 山西农业科学, 2009,37(8):79-82.
[25] 宋晓彦, 杨武德, 张黎. 荞麦多倍体育种研究进展. 山西农业科学, 2009,37(5):81-83.
[26] 杨敬东, 郭露穗, 邹亮, 等. 高药用价值多倍体荞麦诱导及特性研究. 成都大学学报(自然科学版), 2007,26(3):180-182.
[27] Suzuki T, Morishita T, Mukasa Y, et al. Breeding of ‘Manten-Kirari’,a non-bitter and trace-rutinosidase variety of Tartary buckwheat (Fagopyrum tataricum Gaertn.). Breeding Science, 2014,64(4):344-350.
[28] Yuji M, Tatsuro S, Yutaka H. Suitability of rice-tartary buckwheat for crossbreeding and for utilization of rutin. Japan Agricultural Research Quarterly, 2009,43(3):199-206.
[29] 冯国. 中国专家培育出优质荞麦杂交种子榆荞4号. 北京农业, 2010(32):52-53.
[30] Mukasa Y. Studies on new breeding methodologies and variety developments of two buckwheat species (Fagopyrum esculentum Moench and F. tataricum Gaertn). Research Bulletin of the Naro Hokkaido Agricultural Research Center, 2011,195:57-114.
[31] Ohnishi O. Distribution of wild species and perspective for theirutilization. Fagopyrum, 2013,30:9-14.
[32] Krotov A S, Dranenko E T. Amphidiploid buckwheat,Fagopyrum giganteum Krot. sp. nova. Vavilova, 1973,30:41-44.
[33] Chen Q F, Huang X Y, Li X Y, et al. Recent progress in perennial buckwheat development. Sustainability, 2018,10(2):536.
[34] 陈利红, 张波, 徐子勤. AtNHX 1基因对荞麦的遗传转化及抗盐再生植株的获得. 生物工程学报, 2007,23(1):51-60.
[35] Jovanka M, Mirjana N, Slavica N. Agrobacterium-mediated transformation and plant regeneration ofbuckwheat(Fagopyrum esculentum Moench.). Plant Cell,Tissueand Organ Culture, 1992(29):101-108.
[36] Konishi T, Ohnishi O. A linkage map for common buckwheat basedon microsatellite and AFLP markers. Fagopyrum, 2006(23):1-6.
[37] 杜晓磊, 张宗文, 吴斌, 等. 苦荞SSR 分子遗传图谱的构建及分析. 中国农学通报, 2013,29(21), 61-65.
[38] 谭一泓. 小麦育种的未来:新技术与新方向. 高科技与产业化, 2019(9):36-39.
[39] Yabe S, Hara T, Ueno M, et al. Potential of genomic selection in mass selection breeding of an allogamous crop:an empirical study to increase yield of common buckwheat. Frontiers in Plant Science, 2018(9):1-12.
[1] Hao Yani, Pei Hongbin, Gao Zhenfeng, Zhang Yijun, Yang Zhenping. Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat [J]. Crops, 2024, 40(1): 204-213.
[2] Gao Xiaoli, Huang Haijiao, Tian Pengjia, Nimayangzong , Chang Zihui, Labazhaxi , Liao Wenhua, Yang Wencai. Evaluation of Production Performance and Quality of Forage Pea in Alpine Region by Membership Function Method [J]. Crops, 2023, 39(6): 86-93.
[3] Li Wei, Meng Pingzhu, Li Caidi, Yan Zhengang. Analysis of Influencing Factors of Carbon Emissions from Planting Production Based on LMDI Model and Approaches of Carbon Mitigation in Gansu Province [J]. Crops, 2023, 39(5): 264-271.
[4] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[5] Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266.
[6] Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50.
[7] Zhang Yufen, Qi Jingkai, Wang Guiling, Zhao Baoping, Zhou Lei. Study on Geographical Origin of Buckwheat Based on Mineral Element Fingerprint [J]. Crops, 2023, 39(3): 66-74.
[8] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[9] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[10] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[11] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[12] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[13] Hu Dan. Genetic Analysis of Culm Gravity Height and Snapping Resistance in Common Buckwheat [J]. Crops, 2022, 38(4): 83-89.
[14] Yan Shengji, Shang Ziyin, Deng Aixing, Zhang Weijian. Spatiotemporal Characteristics and Reduction Approaches of Farmland N2O Emission in China [J]. Crops, 2022, 38(3): 1-8.
[15] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!