Crops ›› 2021, Vol. 37 ›› Issue (3): 40-45.doi: 10.16035/j.issn.1001-7283.2021.03.006

Previous Articles     Next Articles

Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage

Li Mengyu(), Gao Chuang, Li Qiaoyun(), Xu Kaige, Wang Siyu, Niu Jishan   

  1. Henan Agricultural University/National Engineering Research Centre for Wheat, Zhengzhou 450046, Henan, China
  • Received:2020-06-23 Revised:2021-03-04 Online:2021-06-15 Published:2021-06-22
  • Contact: Li Qiaoyun E-mail:untitled6002@163.com;lqylhy@163.com

Abstract:

Wheat leaf blight is severely harmful to wheat production. Bipolaris sorokiniana is a major pathogen causing this disease. In order to screen the germplasms resistant to leaf blight caused by B.sorokiniana, the method of spraying spore suspension and covering for moisture was used at seedling stage and filling stage of 130 wheat cultivars/lines at the wheat-growing season in 2019-2020 and the correlation of resistance between seedling stage and filling stage were analyzed. The results showed that among 130 wheat cultivars (lines), resistant genotypes were 32.3% at seedling stage, of which high and moderately resistant genotypes were 1.5% and 30.8%, respectively, and had no immune genotype, susceptible germplasm was 67.7% of which moderately and high susceptible genotypes were 20.8% and 46.9%, respectively. The resistant and susceptible cultivars (lines) were 11.5% and 88.5% at filling stage, respectively, and had no high resistant genotype. There was a significant positive correlation between resistances to leaf blight caused by B. sorokiniana at seedling stage and filling stage (r=0.72). The results provide excellent resistant resources for wheat breeding and mechanism study of resistance to leaf blight. The significant correlation between resistances at seedling and filling stage provides promising evidence for evaluating resistance to leaf blight at filling stage through evaluating seedling resistance under artificial inoculation condition in the growth chamber, which is rapid and accurate and can alleviate the heavy workload of resistance identification in the field at filling stage, and reduced the impact of environmental factors on identification results.

Key words: Wheat, Leaf blight, Bipolaris sorokiniana, Resistance identification

Table 1

DLA of 130 wheat cultivars (lines) inoculated with B. sorokiniana at seedling stage and filling stage %"

品种(系)
Cultivar (line)
苗期
Seedling stage
灌浆期
Filling stage
品种(系)
Cultivar (line)
苗期
Seedling stage
灌浆期
Filling stage
品种(系)
Cultivar(line)
苗期
Seedling stage
灌浆期
Filling stage
新矮早818 25.7 50.8 11-695(LWX) 66.6 60.1 中国春 17.3 44.0
新麦13 16.0 11.2 11-696(LWX) 52.8 54.2 远嫁69 12.6 42.5
石L5206-10 18.2 52.5 SP1777-1-4 66.8 81.7 YN177 20.5 44.0
陕优225 11.7 21.8 郑麦366 68.9 63.8 481/274 65.1 87.5
矮丰66 20.2 32.7 绵资02-12 48.8 67.5 TA 3809/312 44.6 57.5
荷兰大籽 14.4 43.0 11-252(LWX) 75.8 71.3 徐麦9169 16.4 39.3
C50232 16.2 55.5 11-253(LWX) 65.9 69.2 囤麦127 19.6 48.8
豫麦47 21.0 58.8 11-269(LWX) 76.8 87.6 百农107 20.3 55.8
郑2062 10.4 58.0 天02-204 68.9 97.7 辉县红 55.1 76.7
良星99 14.6 25.0 12家2联 60.8 78.4 荆辉1号 61.4 50.4
新麦1817 27.7 25.4 济麦21 44.6 56.7 扬麦5号 52.7 65.0
偃展4110 55.0 75.0 CA0816 40.4 57.4 Chancellor 61.2 62.3
陇麦135 41.4 45.0 国麦0116 55.9 66.7 Yuma 26.5 35.0
百泉41 36.0 78.4 高冬2 33.7 76.3 92R137 47.8 73.8
西农9871-1 52.2 82.3 淮核0308 41.4 75.1 11YC173 23.4 25.8
阜麦936 52.3 66.7 鹤0927 20.1 33.4 抗线虫1-1 55.4 66.3
碧蚂1号 49.0 44.8 单体 20.8 65.0 抗线虫1-4 61.5 55.0
岗01 19.7 30.0 许科316 20.6 58.6 温麦8号 66.8 80.4
川农18 19.8 37.2 驻麦6097 12.9 46.7 温麦10号 79.2 97.5
周19 30.9 60.0 航麦901 66.0 80.2 57048 20.1 68.3
节燕98-7 19.5 35.4 Wheatear 28.1 63.3 65498 24.4 25.0
04ZP16 50.0 63.8 Guomai222 27.4 45.8 鄂麦170 23.1 11.4
10M8 17.1 31.7 BP57-1 26.1 43.8 鄂麦526 27.9 50.0
10M14 47.4 60.5 望水白 56.1 52.8 珍麦3号 76.1 22.9
10M24 8.9 16.3 苏麦3号 45.3 63.8 涡麦66 65.2 37.6
10M31 31.4 67.0 PH691 38.2 60.0 中麦170 16.0 21.0
10M16 22.5 67.5 Tybalt 15.6 28.0 郑麦132 13.5 19.5
10M21 20.8 55.0 丽麦16 60.1 84.4 丰德存麦16 27.9 43.8
10M23 24.7 23.3 济南31 33.3 51.7 CIM-1 36.4 58.3
2101-136 28.8 59.2 品质所材料6 12.5 36.3 CIM-17 40.0 48.3
郑州991 28.9 38.0 宛原白1号 18.9 23.6 秋乐2132 51.8 68.4
国麦2号 75.2 48.5 济程2号 14.0 25.4 郑麦1354 54.6 67.5
CH-1 63.4 84.1 豫优1号 28.9 66.3 中育1526 50.2 73.1
西农979-5 18.4 31.0 石98-7136 60.0 83.8 扶麦368 49.9 64.4
04高春4 59.0 48.0 山农4143 77.7 89.4 瑞华1426 41.1 60.7
山农530070 67.3 70.0 SP1777-6-8 65.1 90.0 浚麦118 28.3 42.2
09X1 24.7 33.5 11-285 48.6 86.5 宁麦13 25.4 45.7
PIC420 52.3 96.6 283 32.3 60.5 浩麦1号 68.6 66.3
G57(LHL) 41.8 39.6 10M18 26.9 35.0 淮麦28 57.7 75.0
11-229(LWX) 11.4 52.8 11-270 69.9 83.3 烟农19 53.9 54.4
11-239(LWX) 36.6 67.5 YN006 29.7 58.8 安农0711 32.5 37.5
11-358(LWX) 36.5 40.0 L01378 28.0 12.8 安农1589 33.2 59.0
11-504(LWX) 59.6 62.5 L661(LPG) 61.8 63.0
11-411(LWX) 62.5 65.0 山农737 29.2 31.0

Table 2

Resistance evaluation of 130 wheat cultivars (lines) to leaf blight caused by B. sorokiniana at seedling stage and filling stage"

DLA范围
Range of
DLA (%)
抗性评价
Resistance
evaluation
苗期Seedling stage 灌浆期Filling stage
品种(系)数量(占比)
Number of cultivars (lines) (percentage)
平均DLA
Average DLA
品种(系)数量(占比)
Number of cultivars (lines) (percentage)
平均DLA
Average DLA
1.0~10.9 高抗 2(1.5%) 9.7C - -
11.0~25.9 中抗 40(30.8%) 18.6C 15(11.5%) 20.7C
26.0~40.0 中感 27(20.8%) 30.8B* 19(14.6%) 34.8B*
>40.0 高感 61(46.9%) 57.1A* 96(73.9%) 64.1A*

Fig.1

Performance of wheat cultivars (lines) resistant and susceptible to leaf blight caused by B. sorokiniana at seedling and filling stage R=resistant, S=susceptible. Bs and CK represent the samples inoculated with B. sorokiniana and those treated by distilled water (control), respectively. The resistant materials (a) are Xuke 316, PIC420, Yuanjia 69, PH691 and Zhumai 6097, and the susceptible materials (b) are Xinaizao 818, Bima1, Wangshuibai, 11-253(LWX) and Huixianhong at seedling stage. At filling stage, the resistant and susceptible materials are Emai 170 (c) and Xinong 9871-1 (d), respectively"

Fig.2

Correlation analysis of disease leaf area (DLA) between seedling stage and filling stage"

[1] Gupta P K, Chand R, Vasistha N K , et al. Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathology, 2017,67(3):508-531.
doi: 10.1111/ppa.2018.67.issue-3
[2] Sharma R C, Duveiller E . Spot blotch continues to cause substantial grain yield reductions under resource-limited farming conditions. Journal of Phytopathology, 2006,154(7):482-488.
doi: 10.1111/jph.2006.154.issue-7-8
[3] 刘红彦, 王锡锋, 张忠山 . 河南省小麦叶枯病发生规律研究. 河南农业科学, 1994(8):12-16.
[4] 董燕妮 . 小麦叶枯病发生危害特点及防控措施. 农村经济与科技, 2019,30(13):84-85.
[5] 周玉琴, 宋晓, 金建猛 , 等. 小麦叶枯病的发生动态与防治技术. 农业科技通讯, 2015(8):157-160.
[6] Shideh M, Naser S, Azizollah A , et al. Measuring and modeling crop loss of wheat caused by septoria leaf blotch in seven cultivars and lines in Iran. Journal of Plant Protection Research, 2009,49(3):257-262.
doi: 10.2478/v10045-009-0039-8
[7] 余丹凤 . 浅析野生二粒小麦叶枯病病原菌鉴定及抗病基因遗传特性. 佳木斯职业学院学报, 2016(3):416-418.
[8] 商鸿生, 王凤乐 . 我国小麦叶枯性病害研究进展. 麦类作物学报, 2001,21(3):76-79.
[9] Allali K, Singh P K, Mcmullen M P , et al. Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. Journal of Plant Pathology, 2019,101(4):1115-1125.
doi: 10.1007/s42161-019-00347-x
[10] Xu K G, Jiang Y M, Li Y K , et al. Identification and pathogenicity of fungal pathogens causing black point in wheat on the North China Plain. Indian Journal of Microbiology, 2018,58(2):159-164.
doi: 10.1007/s12088-018-0709-1
[11] Li Q Y, Niu H B, Xu K G , et al. GWAS for resistance against black point caused by Bipolaris sorokiniana in wheat. Journal of Cereal Science, 2020,91:102859.
doi: 10.1016/j.jcs.2019.102859
[12] 中华人民共和国国家质量监督检验检疫总局. 中华人民共和国国家标准:GB 1351-2008小麦. 北京: 中国标准出版社, 2008.
[13] Gauthier G M, Keller N P . Crossover fungal pathogens:the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genetics and Biology, 2013,61:146-157.
doi: 10.1016/j.fgb.2013.08.016
[14] Apoga D, Åkesson H, Jansson H B , et al. Relationship between production of the phytotoxin prehelminthosporol and virulence in isolates of the plant pathogenic fungus Bipolaris sorokiniana. European Journal of Plant Pathology, 2002,108(6):519-526.
doi: 10.1023/A:1019976403391
[15] 余蓬勃, 任妍, 侯玮秀 , 等. 小麦苗期抗纹枯病鉴定方法的改良及抗病品种筛选. 植物病理学报, 2019,49(5):715-720.
[16] 李巧云, 倪永静, 姜玉梅 , 等. 联合鉴定小麦对B. sorokiniana黑胚病与叶枯病抗性的方法:CN 201510539645.7. 2019-08-23.
[17] 农作物品种区域试验技术规程 小麦:NY/T 1301-2007. 北京: 中华人民共和国农业部, 2007.
[18] Suraj G, Sujan M, Michael B J , et al. Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE, 2014,9(9):e108179.
doi: 10.1371/journal.pone.0108179
[19] Mahto B N, Gurung S, Adhikari T B . Assessing genetic resistance to spot blotch,Stagonospora nodorum blotch and tan spot in wheat from Nepal. European Journal of Plant Pathology, 2011,131(2):249-260.
doi: 10.1007/s10658-011-9803-5
[20] 徐淑霞, 周青, 王卫民 . 河南小麦品种对白粉病、叶枯病的抗性鉴定及评价. 山东农业科学, 2008(7):67-68.
[21] 国娇娇, 马新颖, 缪丽利 , 等. 不同小麦品种组合对小麦壳针孢叶枯病的抗病性鉴定. 中国农学通报, 2013,29(27):187-191.
[22] Duveiller E, Kandel Y R, Sharma R C , et al. Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology, 2005,95:248-256.
doi: 10.1094/PHYTO-95-0248 pmid: 18943117
[23] Sharma R C, Duveiller E . Advancement toward new spot blotch resistant wheat in South Asia. Crop Science, 2007,47:961-968.
doi: 10.2135/cropsci2006.03.0201
[24] 邢小萍, 汪敏, 宋爽 , 等. 不同小麦品种(系)叶枯病田间发病情况及抗性评价. 甘肃农业大学学报, 2009,44(6):102-106.
[1] Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9.
[2] Du Xiaoyu, Li Nannan, Zou Shaokui, Wang Lina, Lü Yongjun, Zhang Qian, Li Shuncheng, Yang Guangyu, Han Yulin. Comprehensive Analysis of Main Traits of Newly Bred Wheat Varieties (Lines) in Southern Huang-Huai Region [J]. Crops, 2021, 37(4): 38-45.
[3] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[4] Xiang Chao, Sun Suli, Zhu Zhendong, Zong Xuxiao, Yang Tao, Liu Rong, Yang Mei, Xian Dongfeng, Yang Xiuyan. Resistance and Molecular Identification to Powdery Mildew of Pea Germplasms in Sichuan [J]. Crops, 2021, 37(3): 51-56.
[5] Zhou Zhengping, Tian Baogeng, Chen Wanhua, Wang Ziyang, Yuan Wei, Liu Shiping. Effects of Different Tillage Methods and Straw Returning on Soil Nutrients and Wheat Yield and Quality [J]. Crops, 2021, 37(3): 78-83.
[6] Zhao Qingling, Lin Wen, Ren Aixia, Zhang Rongrong, Li Lei, Sun Min, Gao Zhiqiang. Effects of Topdressing in Spring on Population Construction and Grain Filling Process of Winter Wheat [J]. Crops, 2021, 37(3): 99-105.
[7] Jia Zimiao, Qiu Yuliang, Lin Zhishan, Wang Ke, Ye Xingguo. Research Progress on Wheat Improvement by Using Desirable Genes from Its Relative Species [J]. Crops, 2021, 37(2): 1-14.
[8] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[9] Yang Chongqing, Chang Keqin, Mu Lanhai, Du Yanping, Zhang Jiupan, Li Yaodong, Zhang Xiaojuan. Status and Trend Analysis of Buckwheat Variety Improvement and Industrial Development [J]. Crops, 2021, 37(2): 28-34.
[10] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[11] Wang Yujiao, Cao Qi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Shi Shubing. Effects of Chemical Regulation on Wheat Yield and Quality under Different Soil Conditions [J]. Crops, 2021, 37(2): 96-100.
[12] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[13] An Juanhua, Dong Xin, Wang Kejian, He Zhenxue. Study on the Classification of Wheat Grain Quality Based on GWO Optimized SVM [J]. Crops, 2021, 37(1): 200-206.
[14] Wang Liming, Kong Weiwei, Gao Huali, Dong Puhui, Yan Xuefang, Wang Chunping, Wang Honggang, Li Xingfeng. Allelic Variations of Lipoxygenase (LOX) Activity Genes on Chromosome 4B and Distributions in Different Wheat Regions of China [J]. Crops, 2021, 37(1): 32-37.
[15] Ma Mingchuan, Liu Longlong, Liu Zhang, Zhou Jianping, Nan Chenghu, Zhang Lijun. Analysis of SSR Loci in Whole Genome and Development of Molecular Markers in Tartary Buckwheat [J]. Crops, 2021, 37(1): 38-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!