Crops ›› 2022, Vol. 38 ›› Issue (4): 160-166.doi: 10.16035/j.issn.1001-7283.2022.04.022

Previous Articles     Next Articles

Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1

Li Zujun1(), Jiang Xue1, Yang Tonglian3, Wu Chaoxin1, Zhang Xichun1, Jiang Xuehai1, Long Wuhua1, Zhang Yushan2, Zhu Susong1()   

  1. 1Rice Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
    2Guizhou Institute of Biotechnology, Guiyang 550006, Guizhou, China
    3Agricultural and Rural Bureau of Congjiang County, Congjiang 557400, Guizhou, China
  • Received:2022-04-11 Revised:2022-06-07 Online:2022-08-15 Published:2022-08-22
  • Contact: Zhu Susong E-mail:17346716041@163.com;susongzhu@139.com

Abstract:

The effects of various fertilizer ratios on yield and its components, dry matter accumulation, RVA characteristic spectrum of rice starch, and relative concentration of fragrance compounds in Guizhouhe Goudang No.1 were investigated by the “3414” experimental design. Under various fertilizer ratios, the yield of N2P2K2 treatment was the highest at 7.27t/ha, which was not significant different from that of N2P0K2 and N2P3K2 treatments. Grain yield of each treatments were all positively associated with effective panicles, total spikelets, seed-setting rate, and 1000-grain weight, with the effective panicles reaching a statistically significant level (P < 0.05). Under the premise of ensuring seed-setting rate and 1000-grain weight, N2P2K2 treatment had more effective panicles and greater dry matter accumulation at the late heading stage, so as to achieve high yield. From the perspective of rice quality, with the increase of nitrogen, phosphorus and potassium fertilizer application rate, the peak viscosity and breakdown viscosity value decreased to varying degrees, and the rice eating quality decreased. With the increase of phosphorus fertilizer application rate, the relative content of the main aroma volatile substances in grains gradually increased, among which the relative content of N2P3K2 treatment was the highest. In conclusion, N2P3K2 treatment could increase grain flavor on the basis of ensuring yield. The optimum yield of Goudang No.1 was 6.86t/ha with the treatment of 174.45kg/ha of N, 52.80kg/ha of P2O5, 103.65kg/ha of KCl through the equation of fertilizer effect.

Key words: Goudang No. 1, “3414” test, Yield, RVA characteristic spectrum, Flavoring substance

"

处理
Treatment
养分施用量Nutrient application
N P2O5 KCl
N0P0K0 0.00 0.00 0.00
N0P2K2 0.00 53.40 90.00
N1P2K2 70.05 53.40 90.00
N2P0K2 140.10 0.00 90.00
N2P1K2 140.10 26.70 90.00
N2P2K2 140.10 53.40 90.00
N2P3K2 140.10 80.10 90.00
N2P2K0 140.10 53.40 0.00
N2P2K1 140.10 53.40 45.00
N2P2K3 140.10 53.40 135.00
N3P2K2 210.15 53.40 90.00
N1P1K2 70.05 26.70 90.00
N1P2K1 70.05 53.40 45.00
N2P1K1 140.10 26.70 45.00

Table 2

Yield and its components of Goudang No.1 with different fertilizer ratios"

处理
Treatment
有效穗数
Effective tillers number
(×104/hm2)
穗粒数
Grains per
panicle
总颖花量
Total spikelets
(×104/hm2)
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight(g)
产量
Yield
(t/hm2)
N0P0K0 98.85g 243.48a 24 076.65g 95.00ab 28.79bc 5.24h
N0P2K2 141.60c 238.13ab 33 725.55a 92.55bc 28.35cd 6.34ef
N1P2K2 144.75bc 205.96d 29 822.85cd 96.13a 29.82a 6.78b
N2P0K2 152.85ab 201.95d 30 877.65abc 94.12abc 28.85bc 7.24a
N2P1K2 139.95cd 210.94cd 29 551.35cd 94.84ab 28.42bcd 6.67bc
N2P2K2 156.45a 212.90cd 33 305.25ab 94.24abc 28.46bc 7.27a
N2P3K2 140.70c 215.32cd 30 303.30c 95.63a 28.93bc 7.17a
N2P2K0 127.65e 212.76cd 27 171.75def 94.95ab 29.12abc 6.30f
N2P2K1 124.95e 208.16cd 26 032.20efg 89.43d 27.68d 6.56cd
N2P2K3 113.25f 215.11cd 24 387.90fg 95.98a 29.21ab 6.65bcd
N3P2K2 131.25de 224.31bc 29 441.70cd 96.48a 28.86bc 6.73bc
N1P1K2 137.55cd 205.36d 28 257.00cde 91.55cd 28.55bc 6.01g
N1P2K1 144.75bc 210.40cd 30 441.45bc 95.49a 28.77bc 6.63bcd
N2P1K1 142.95c 216.65cd 30 965.70abc 94.41ab 28.62bc 6.49de

Table 3

Yield correlation analysis of Goudang No.1 under different fertilizer ratios"

项目
Item
有效穗数
Effective tillers number
穗粒数
Grains per panicle
总颖花量
Total spikelets
结实率
Seed-setting rate
千粒重
1000-grain weight
产量Yield 0.486* -0.187 0.341 0.187 0.143

Table 4

Dry matter accumulation of Goudang No.1 under different fertilizer ratios t/hm2"

处理
Treatment
抽穗期
Heading date
成熟期
Maturity
抽穗―成熟
Heading date-maturity
N0P0K0 9.90f 12.08g 2.38g
N0P2K2 10.70de 15.23d 4.53ab
N1P2K2 11.71ab 16.38b 4.67ab
N2P0K2 11.80ab 16.61ab 4.81a
N2P1K2 10.84cde 15.43c 4.60ab
N2P2K2 12.20a 17.14a 4.94a
N2P3K2 11.80ab 14.94cd 3.13f
N2P2K0 11.13cd 15.38cd 4.24bc
N2P2K1 9.26g 12.00ef 3.74cde
N2P2K3 9.86f 13.48e 3.63def
N3P2K2 9.29g 12.58fg 3.30ef
N1P1K2 11.34bc 15.09cd 3.76cde
N1P2K1 10.45e 14.66d 4.21bc
N2P1K1 11.17cd 15.15cd 3.97cd

Table 5

RVA characteristic values of Goudang No.1 rice under different treatments"

处理
Treatment
峰值黏度
PKV (cP)
热浆黏度
HPV (cP)
崩解值
BDV (cP)
最终黏度
CPV (cP)
消减值
SBV (cP)
糊化时间
Pe T (min)
糊化温度
Pa T (℃)
N0P0K0 1406.33abc 316.33cd 1090.00abc 452.67abc -953.67b 3.29b 69.95c
N0P2K2 1353.33abcd 334.33abcd 1019.00abcd 466.33ab -887.00ab 3.31ab 70.43abc
N1P2K2 1298.33bcd 331.67abcd 1000.00cd 471.67ab -826.67ab 3.33ab 70.67abc
N2P0K2 1358.67abc 323.00bcd 1035.67abcd 446.67abc -912.00ab 3.31ab 71.02abc
N2P1K2 1360.67abc 332.33abcd 1028.33abcd 455.00abc -905.67ab 3.38ab 71.22ab
N2P2K2 1259.33cd 308.00d 951.33de 425.00c -767.67a 3.40a 71.52a
N2P3K2 1302.67bcd 333.67abcd 1035.67abcd 461.00abc -841.67ab 3.29b 70.45abc
N2P2K0 1338.00abcd 340.67abc 997.33d 471.33ab -866.67ab 3.35ab 70.72abc
N2P2K1 1352.33abcd 348.00ab 1004.33bcd 480.67a -871.67ab 3.31ab 70.43abc
N2P2K3 1209.00d 316.33cd 892.67e 433.33bc -775.67a 3.35ab 70.72abc
N3P2K2 1351.00abcd 334.00abcd 1017.00abcd 456.67abc -894.33ab 3.33ab 70.77abc
N1P1K2 1368.67abc 345.33ab 1023.33abcd 479.67a -889.00ab 3.31ab 69.92c
N1P2K1 1423.67ab 329.33abcd 1094.33ab 457.00abc -966.67b 3.31ab 70.47abc
N2P1K1 1461.33a 355.00a 1106.33a 485.33a -976.00b 3.30b 70.23bc

Table 6

Effects of different treatments on the relative content of aroma substances in Goudang No.1 %"

处理
Treatment
香味物质相对含量
Relative content of aroma substances
2AP 壬醛Nonanal 己醛Hexanal 戊醛Valeraldehyde
N0P0K0 0.14 0.26 2.63 20.80
N0P2K2 0.18 0.31 2.27 10.74
N1P2K2 0.13 0.25 2.28 12.26
N2P0K2 0.11 0.19 3.26 13.65
N2P1K2 0.17 0.26 2.85 11.84
N2P2K2 0.12 0.27 3.38 13.24
N2P3K2 0.26 0.58 2.27 11.53
N2P2K0 0.18 0.67 3.00 11.16
N2P2K1 0.10 0.23 2.92 13.44
N2P2K3 0.15 0.25 2.77 16.90
N3P2K2 0.11 0.28 2.70 12.22
N1P1K2 0.14 0.42 3.34 20.20
N1P2K1 0.10 0.28 3.70 13.86
N2P1K1 0.09 0.21 3.50 13.92

Table 7

Correlation analysis between yield and rice quality of Goudang No.1 with different fertilizer ratios"

项目
Item
2AP 壬醛
Nonanal
己醛
Hexanal
戊醛
Valeraldehyde
峰值黏度
PKV
热浆黏度
HPV
崩解值
BDV
最终黏度
CPV
消减值
SBV
糊化时间
Pe T
糊化温度
Pa T
产量Yield 0.270 0.058 -0.440 -0.173 -0.460 0.011 -0.465 -0.049 0.507 0.245 0.295
[1] 焦爱霞, 王艳杰, 陈惠查, 等. 贵州黎平县侗族村寨香禾糯资源利用与保护现状的考察. 植物遗传资源学报, 2015, 16(1):173-177.
[2] 李杰, 郑晓峰, 黄刚, 等. 贵州黔东南地方稻种香禾糯的研究进展. 中国稻米, 2019, 25(2):53-58.
doi: 10.3969/j.issn.1006-8082.2019.02.012
[3] 付平, 吴天祥, 吴力亚, 等. 贵州传统香禾糯酒成分分析及其酒体抗氧化活性评价. 现代食品科技, 2021, 37(10):261-269,78.
[4] 雷启义, 周江菊, 罗静, 等. 贵州侗族地区香禾糯品种多样性的变化. 生物多样性, 2017, 25(9):990-998.
doi: 10.17520/biods.2017119
[5] 浦选昌, 郑桂云, 余志, 等. 优质香禾糯新品种苟当2号的选育过程及栽培技术. 现代农业科技, 2016(19): 58,62.
[6] 吴培谋, 潘宗东. 黔东南地区特色稻产业化现状及发展建议. 农业科技通讯, 2018(7):28-30.
[7] 周江波, 刘玉宝. 贵州山地禾类稻种特征、耕作文化及其保存与利用前景. 耕作与栽培, 2021, 41(2):57-61.
[8] 龙锦屏. 从江香禾高产栽培技术推广项目效果显著. 耕作与栽培, 2002(1):64-66.
[9] 吴元华, 浦选昌, 杨昌元, 等. 黔东南禾稻类型分类及叶龄栽培模式研究. 贵州农业科学, 2010, 38(1):49-52.
[10] 郑桂云, 刘静, 杨芳锡. 优质香禾苟岑告需肥特性研究. 耕作与栽培, 2011(5):27-28.
[11] 唐会会, 郑桂云, 徐海峰, 等. 贵州禾苟当1号在不同海拔及密度下的产量. 农技服务, 2021, 38(7):10-14.
[12] 陈新平, 张福锁. 通过“3414”试验建立测土配方施肥技术指标体系. 中国农技推广, 2006(4):36-39.
[13] American Association of Cereal Chemical (AACC). Method determination of the pasting properties of rice with the rapid visco analyser. (1997-10-15)[2022-03-31]. http://www.Aaccnet.org/Pages/default.Aspx.
[14] 陈新平, 张福锁. 通过“3414”试验建立测土配方施肥技术指标体系. 中国农技推广, 2006(4):36-39.
[15] 周江明, 赵琳, 董越勇, 等. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16(2):274-281.
[16] 张锦滨, 王晓云, 孟圆, 等. 不同磷肥用量对水稻产量效益、磷肥利用率及土壤养分的影响. 中国农学通报, 2021, 37(32):96-101.
[17] 郭红, 赵呈明, 李玲, 等. 测土配方施肥对水稻产量和肥料利用率的影响. 大麦与谷类科学, 2020, 37(6):35-38.
[18] 李松竹. 不同配方施肥对水稻产量及肥料利用率的影响. 哈尔滨:东北农业大学, 2018.
[19] 杨林生, 张宇亭, 杨柳青, 等. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019(4):89-95.
[20] 陈雷, 韦宇, 张晓丽, 等. 施氮量对优质杂交稻丰田优553干物质生产及氮肥利用率的影响. 杂交水稻, 2021, 36(6):42-47.
[21] 种浩天, 尚程, 张运波, 等. 增密减氮对不同类型水稻品种颖花形成的影响. (2021-12-31)[2022-03-31]. http://kns.cnki.net/kcms/detail/11.1808.S.20211231.1055.005.html.
[22] 马会珍. 不同生态区优质食味粳稻品质特征的比较研究. 扬州:扬州大学, 2021.
[23] 程鸿燕, 韩渊怀. 大米食味品质的研究及其育种进展. 山西农业大学学报(自然科学版), 2016, 36(12):890-896.
[24] 郑英杰, 于亚辉, 李振宇, 等. 北方两系杂交粳稻淀粉RVA谱特征与食味品质的关系. 中国稻米, 2018, 24(3):49-54.
doi: 10.3969/j.issn.1006-8082.2018.03.010
[25] Zhang H, Xu H, Feng M J, et al. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnology Journal, 2018, 16(1):18-26.
doi: 10.1111/pbi.12745 pmid: 28429576
[26] 郭涛, 王海凤, 薛芳, 等. 氮肥追施量对香稻1601品质和淀粉RVA谱特征值的影响. 北方水稻, 2021, 51(1):6-10.
[27] 李润卿, 申勇, 朱宽宇, 等. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响. 作物杂志, 2022(1):205-212.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[6] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[7] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[8] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[9] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[10] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[11] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[14] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[15] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!