Crops ›› 2022, Vol. 38 ›› Issue (6): 23-32.doi: 10.16035/j.issn.1001-7283.2022.06.004

;

Previous Articles     Next Articles

Advance of Effects of Rhizosphere Temperature Stress on Morphology and Physiology of Wheat Root

Shen Wenyuan(), Chen Xinyu, Yu Xurun, Wu Yunfei, Chen Gang, Xiong Fei()   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-27 Revised:2022-09-27 Online:2022-12-15 Published:2022-12-21
  • Contact: Xiong Fei E-mail:516283489@qq.com;feixiong@yzu.edu.cn

Abstract:

Wheat root is not only the main organ for water and nutrient absorption, but also an important place for the synthesis of a variety of hormones, organic acids and amino acids. Its growth and development is related to the final yield and quality of wheat. Due to global climate change, extreme high or low temperature disasters occur frequently. Extreme temperature also leads to extreme rhizosphere temperature, which directly affects wheat roots and their growth. Based on the research results of rhizosphere temperature stress on wheat root growth in recent years, this paper focuses on the effects of rhizosphere temperature stress on wheat root morphology and physiological indexes. The main problems and future research directions of wheat root system were discussed in order to provide theoretical basis for wheat root regulation of stress resistant cultivation in wheat.

Key words: Wheat root, Rhizosphere temperature, Root morphology, Physiological index

Fig.1

The physiological mechanism of rhizosphere high temperature affecting wheat root development sHSP: small heat shock proteins, ↑: activity or content increase, ↓: activity or content decrease, ?: research gap"

Fig.2

The physiological mechanism of rhizosphere low temperature affecting wheat root development ↑: increased activity or content, ↓: reduced activity or content, -: no significant change, ?: research gap"

[1] Kakanur Y, Baviskar V S, Navathe S, et al. Impact of heat and drought stress on phenological development and yield in bread wheat. Plant Physiology Reports, 2021, 26(2):357-367.
doi: 10.1007/s40502-021-00586-0
[2] Chad Z, Hilary B, Roberta N, et al. Place,proximity,and perceived harm:extreme weather events and views about climate change. Climatic Change, 2018, 149(3):349-365.
doi: 10.1007/s10584-018-2251-x
[3] 张太平, 潘伟斌. 根际环境与土壤污染的植物修复研究进展. 生态环境, 2003, 12(1):76-80.
[4] 宋敏丽, 温祥珍, 李亚灵. 根际高温对植物生长和代谢的影响综述. 生态学杂志, 2010, 29(11):2258-2264.
[5] 陈继康, 李素娟, 张宇, 等. 不同耕作方式麦田土壤温度及其对气温的响应特征——土壤温度日变化及其对气温的响应. 中国农业科学, 2009, 42(7):2592-2600.
[6] Zhou Y, Xu L, Xu Y, et al. A meta-analysis of the effects of global warming on rice and wheat yields in a rice-wheat rotation system. Food and Energy Security, 2021, 10:e316.
[7] 许璐璐, 王涵, 高盼盼, 等. 环境胁迫对植物根系形态的影响. 安徽农业科学, 2020, 48(14):16-19.
[8] Qin X, Feng F, Wen X, et al. Historical genetic responses of yield and root traits in winter wheat in the yellow-Huai-Hai River valley region of China due to modern breeding (1948-2012). Plant and Soil, 2018, 439:7-18.
doi: 10.1007/s11104-018-3832-1
[9] 赵德勇. 非生物胁迫条件小麦根系性状的遗传学基础研究进展. 分子植物育种, 2020, 18(4):1236-1243.
[10] Hendel E, Bacher H, Oksenberg A, et al. Deciphering the genetic basis of wheat seminal root anatomy uncovers ancestral axial conductance alleles. Plant,Cell and Environment, 2021, 44(6):1921-1934.
doi: 10.1111/pce.14035
[11] Qingzhang X, Bingru H. Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop Science, 2000, 40(5):1368-1374.
doi: 10.2135/cropsci2000.4051368x
[12] Tahir I, Nakata N, Yamaguchi T, et al. Influence of High shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages. Journal of Agronomy and Crop Science, 2010, 194(2): 141-151.
doi: 10.1111/j.1439-037X.2008.00298.x
[13] Alireza N, Heinrich G, Hans-Peter K, et al. Wheat root diversity and root functional characterization. Plant and Soil, 2014, 380:211-229.
doi: 10.1007/s11104-014-2082-0
[14] 裴红宾, 张永清, 上官铁梁. 根区温度胁迫对小麦抗氧化酶活性及根苗生长的影响. 山西师范大学学报(自然科学版), 2006, 20(2):78-81.
[15] Patnaik B, Sinha K. Effect of temperature on the root growth of wheat cultivars. Indian Journal of Plant Physiology, 2001, 70(4):381-391.
[16] 尹能文, 李加纳, 刘雪, 等. 高温干旱下油菜的木质化应答及其在茎与根中的差异. 作物学报, 2017, 43(11):1689-1695.
doi: 10.3724/SP.J.1006.2017.01639
[17] Kuroyanagi T, Paulsen G M. Mediation of high-temperature injury by roots and shoots during reproductive growth of wheat. Plant Cell and Environment, 2010, 11(6):517-523.
doi: 10.1111/j.1365-3040.1988.tb01790.x
[18] 马元喜, 王化岑, 王晨阳, 等. 冬小麦根系各级分枝形成及其解剖结构研究. 作物学报, 2002, 28(3):327-332.
[19] Asthir B, Koundal A, Bains N S. Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biologia Plantarum, 2012, 56(4):757-761.
doi: 10.1007/s10535-012-0209-1
[20] Razem F A, Bernards M A. Reactive oxygen species production in association with suberization:evidence for an NADPH- dependent oxidase. Journal of Experimental Botany, 2003, 54 (384):935-941.
doi: 10.1093/jxb/erg094
[21] Wang X, Cai J, Liu F L, et al. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry, 2014, 74:185-192.
doi: 10.1016/j.plaphy.2013.11.014 pmid: 24308988
[22] 郭天财, 王晨阳, 朱云集, 等. 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998, 24(6):957-962.
[23] Yue N, Xiang Y. An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science, 2018, 9:915.
doi: 10.3389/fpls.2018.00915 pmid: 30018629
[24] 王飞, 马金玲, 秦丹丹, 等. 小麦耐热及热敏感基因型在高温胁迫下膜透性及膜脂组分的差异. 农业生物技术学报, 2013, 21(8):904-910.
[25] Dar A A, Choudhury A R, Kancharla P K, et al. The FAD2 gene in plants:occurrence,regulation,and role. Frontiers in Plant Science, 2017, 8:1789.
doi: 10.3389/fpls.2017.01789
[26] Kaba A K, Janicka-Russak M G. Differential regulation of vacuolar H+-ATPase and H+-PPase in Cucumis sativus roots by zinc and nickel. Plant Science, 2011, 180(3):531-539.
doi: 10.1016/j.plantsci.2010.11.013
[27] Duby G, Boutry M. The plant plasma membrane proton pump ATPase:a highly regulated P-type ATPase with multiple physiological roles. Pflügers Archiv:European Journal of Physiology, 2009, 457(3):645-655.
doi: 10.1007/s00424-008-0457-x
[28] 郭启芳, 吴耀领, 王玮. 干旱、高温及共胁迫下不同小麦品种的生理生化响应差异. 山东农业科学, 2014, 46(11):32-38.
[29] 胡建成, 郑海金, 陈鑫阳, 等. 小麦根和叶细胞质膜Ca2+- ATPase性质的比较. 植物学报, 1997(5):439-444.
[30] Qian Z, Zhao Y J, Zhao B C, et al. Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Molecular Biology, 2009, 69:33-46.
doi: 10.1007/s11103-008-9403-8 pmid: 18836689
[31] 焦蓉, 刘好宝, 刘贯山, 等. 论脯氨酸累积与植物抗渗透胁迫. 中国农学通报, 2011, 27(7):216-221.
[32] Chaitanya K V, Sundar D, Reddy A R. Mulberry leaf metabolism under high temperature stress. Biologia Plantarum, 2001, 44(3):379-384.
doi: 10.1023/A:1012446811036
[33] Barunawati N, Maghfoer M D, Kendarini N, et al. Proline and specific root length as response to drought of wheat lines (Triticum aestivum L.). Agrivita:Journal of Agricultural Science, 2016, 38(3):296-302.
[34] 王向阳, 王淑俭, 彭文博, 等. 高温对小麦幼苗生理特性影响的初步研究. 河南农业大学学报, 1992, 26(1):9-15.
[35] Silke G, Thilo W, Andreas M, et al. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiology, 2005, 137(1):117-126.
pmid: 15618414
[36] Lehmann S, Funck D, Szabados L, et al. Proline metabolism and transport in plant development. Amino Acids, 2010, 39(4):949-962.
doi: 10.1007/s00726-010-0525-3 pmid: 20204435
[37] Molly P, Justin F, Mechthild T. Different and overlapping functions of Arabidopsis LHT6 and AAP1 transporters in root amino acid uptake. Journal of Experimental Botany, 2014, 65(18):5193-5204.
doi: 10.1093/jxb/eru278
[38] Couturier J, Faÿ E D, Fitz M, et al. PtAAP11,a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar. Journal of Experimental Botany, 2010, 61(6):1671-1682.
doi: 10.1093/jxb/erq036 pmid: 20190041
[39] 魏乐, 杜军华. 高温和零上低温对小麦根系含糖量及细胞透性的影响. 青海师范大学学报(自然科学版), 1999, 35(1):36-40.
[40] Xia J, Zhao Y H, Wang W K, et al. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress. Scientific Reports, 2015, 5(10):14426.
doi: 10.1038/srep14426
[41] Sasaki K, Itagi T. Effect of root cooling treatment of nutrient solution on growth and yield of tomato,cucumber and melon. Environment Control in Biology, 2010, 27(3):89-95.
doi: 10.2525/ecb1963.27.89
[42] 郭洪雪, 宋希云, 燕增文, 等. 高温胁迫对小麦幼苗几个生理生化指标的影响. 华北农学报, 2007, 22(增):71-74.
[43] Takahashi F, Sato-Nara K, Kobayashi K, et al. Sugar-induced adventitious roots in Arabidopsis seedlings. Journal of Plant Research, 2003, 116(2):83-91.
pmid: 12736780
[44] Garay-Arroyo A, Sánchez M D L P S, Azpeitia E, et al. Hormone symphony during root growth and development. Developmental Dynamics, 2012, 241(12):1867-1885.
doi: 10.1002/dvdy.23878 pmid: 23027524
[45] Kosakivska I, Voytenko L V, Likhnyovskiy R V, et al. Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L. seedlings. Genetics and Plant Physiology, 2014, 4(3/4):201-208.
[46] Verslues P E, Zhu J K. Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions, 2005, 33(2):375-379.
doi: 10.1042/BST0330375
[47] 朱晓琛, 张汉马, 南文斌. 脱落酸调控植物根系生长发育的研究进展. 植物生理学报, 2017, 53(7):1123-1130.
[48] Wang X, Zhuang L, Shi Y, et al. Up-Regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis. International Journal of Molecular Sciences, 2017, 18(9):1981.
doi: 10.3390/ijms18091981
[49] Mammadov J, Buyyarapu R, Guttikonda S K, et al. Wild relatives of maize,rice,cotton,and soybean:treasure troves for tolerance to biotic and abiotic stresses. Frontiers in Plant Science, 2018, 9:886.
doi: 10.3389/fpls.2018.00886 pmid: 30002665
[50] Yildiz M, Oglu S T. Synthesis of soluble heat shock proteins in seminal root tissues of some cultivated and wild wheat genotypes. Acta Biologica Hungarica, 2006, 57(1):81-95.
pmid: 16646527
[51] Duan S, Liu B, Zhang Y, et al. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BioMed Central, 2019, 20(1):257.
[52] Guo X L, Yuan S N, Zhang H N, et al. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. BMC Plant Biology, 2020, 20(1):364.
doi: 10.1186/s12870-020-02555-5
[53] Hu X J, Chen D, Mclntyre C L, et al. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant,Cell and Environment, 2018, 41(1):79-98.
doi: 10.1111/pce.12957
[54] 张园园, 赵慧, 张玉杰, 等. 小麦热激转录因子基因TaHsfA2f生物学特性及耐热性调控作用. 农业生物技术学报, 2019, 27(5):69-79.
[55] 陈襄礼, 李林峰, 王重锋, 等. 小麦倒春寒发生特点及防御措施初探. 河南农业科学, 2014, 43(2):35-37.
[56] Ji H, Xiao L, Xia Y, et al. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 2017, 243:33-42.
doi: 10.1016/j.agrformet.2017.04.016
[57] 刘炜, 杨君林, 许安民, 等. 不同根区温度对冬小麦生长发育及养分吸收的影响. 干旱地区农业研究, 2010, 28(4):197-201.
[58] Zabotin A I, Barisheva T S, Zabotina O A, et al. Alterations in cell walls of winter wheat roots during low temperature acclimation. Journal of Plant Physiology, 1998, 152(4):473-479.
doi: 10.1016/S0176-1617(98)80266-6
[59] 于晶. 寒地冬小麦东农冬麦1号抗寒机理研究. 哈尔滨: 东北农业大学, 2009.
[60] 臧贺藏, 王言景, 张均, 等. 冬小麦初生根与次生根形态、生理性状差异分析. 河南农业科学, 2018, 47(6):24-29.
[61] Li X, Cai J, Liu F, et al. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 2014, 82:34-43.
doi: 10.1016/j.plaphy.2014.05.005 pmid: 24887010
[62] Kreslavski V D, Los D A, Allakhverdiev S I, et al. Signaling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology, 2012, 59(2):141-154.
doi: 10.1134/S1021443712020057
[63] Apel K, Hirt H. Reactive oxygen species :metabolism,oxidative stress,and signal transduction. Annual Review of Plant Biology, 2004, 55:373-399.
doi: 10.1146/annurev.arplant.55.031903.141701
[64] 张璐鑫. 低温胁迫对小麦根系生理及茎基腐病致病菌含量影响. 保定: 河北农业大学, 2021.
[65] Naydenov N G, Khanam S, Siniauskaya M, et al. Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold,salinity and osmotic stresses. Genes and Genetic Systems, 2010, 85(1):31-42.
pmid: 20410663
[66] Beffa R, Martin H V, Pilet P E. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiology, 1990, 94(2):485-491.
doi: 10.1104/pp.94.2.485 pmid: 16667738
[67] Redinbaugh M G, Wadsworth G J, Scandalios J G. Characterization of catalase transcripts and their differential expression in maize. Biochimica et Biophysica Acta, 1988, 951(1):104-116.
pmid: 2461221
[68] 范琼花. 硅对低温胁迫小麦光合作用和膜脂肪酸组成及膜功能的影响. 北京: 中国农业科学院, 2008.
[69] Cosmin B, Basu S K. The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics, 2009, 2(2):78-84.
[70] Bonza M C, Michelis M. The plant Ca2+-ATPase repertoire:biochemical features and physiological functions. Plant Biology, 2011, 13(3):421.
doi: 10.1111/j.1438-8677.2010.00405.x pmid: 21489092
[71] 刘炜, 孙德兰, 王红, 等. 2℃低温下抗寒冬小麦与冷敏感春小麦幼苗细胞质膜Ca2+-ATPase活性比较. 作物学报, 2002, 28(2):227.
[72] 王荣富, 张云华, 于江龙. 零下低温对小麦线粒体Na+/K+-ATP酶活性的影响. 安徽农业大学学报, 2002, 29(2):108-113.
[73] Kolupaev Y E, Yastreb T O, Oboznyi A I, et al. Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress. Russian Journal of Plant Physiology, 2016, 63(3):326-337.
doi: 10.1134/S1021443716030067
[74] Misra N, Saxena P. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 2009, 177(3):181-189.
doi: 10.1016/j.plantsci.2009.05.007
[75] Wen J F, Gong M, Liu Y, et al. Effect of hydrogen peroxide on growth and activity of some enzymes involved in proline metabolism of sweet corn seedlings under copper stress. Scientia Horticulturae, 2013, 164:366-371.
doi: 10.1016/j.scienta.2013.09.031
[76] Klimov S V, Burakhanova E A, Alieva G P, et al. Ability of winter wheat plants to become hardened against frost related to peculiarities of carbon dioxide exchange,biomass synthesis,and various forms of water-soluble carbohydrates. Biology Bulletin, 2010, 37(2):168-173.
doi: 10.1134/S1062359010020111
[77] Equiza M A. Root growth inhibition by low temperature explains differences in sugar accumulation between spring and winter wheat. Functional Plant Biology, 2001, 28:1249-1259.
doi: 10.1071/PP01118
[78] Sun X, Hu C, Tan Q, et al. Endogenous hormone in response to molybdenum in winter wheat roots under low temperature stress. Journal of Food Agriculture and Environment, 2010, 8(3):597-601.
[79] Rao K M, Raghavendra A S, Reddy K J. Physiology and molecular biology of stress tolerance in plants. Physiology and Molecular Biology of Stress Tolerance in Plants, 2006, 6349:131-155.
[80] Pagter M, Liu F, Jensen C R, et al. Effects of chilling temperatures and short photoperiod on PSII function,sugar concentrations and xylem sap ABA concentrations in two Hydrangea species. Plant Science, 2008, 175(4):547-555.
doi: 10.1016/j.plantsci.2008.06.006
[81] Huang X, Shi Z, Hu A, et al. ABA is involved in regulation of cold stress response in bermudagrass. Frontiers in Plant Science, 2017, 8:1613.
doi: 10.3389/fpls.2017.01613 pmid: 29081782
[82] Olinevich O V, Khokhlova L P, Raudaskoski M. The microtubule stability increases in abscisic acid-treated and cold-acclimated differentiating vascular root tissues of wheat. Journal of Plant Physiology, 2002, 159(5):465-472.
doi: 10.1078/0176-1617-00642
[83] Khokhlova L P, Olinevich O V, Tarakanova N Y, et al. Oryzalin- induced changes in water status and cytoskeleton proteins of winter wheat seedlings upon cold acclimation and ABA treatment. Russian Journal of Plant Physiology, 2004, 51(5):684-696.
doi: 10.1023/B:RUPP.0000040757.07698.d8
[84] 李桂俊. 赤霉素对细胞壁组分以及拟南芥主根伸长的影响. 南京: 南京农业大学, 2015.
[85] Zentella R, Zhang Z L, Stephen G, et al. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 2007, 19(10):3037-3057.
doi: 10.1105/tpc.107.054999
[86] Gupta R, Deswal R. Antifreeze proteins enable plants to survive in freezing conditions. Journal of Biosciences, 2014, 39(5):931-944.
pmid: 25431421
[87] Antikainen M, Griffith M. Antifreeze protein accumulation in freezing-tolerant cereals. Physiologia Plantarum, 2010, 99(3):423-432.
doi: 10.1111/j.1399-3054.1997.tb00556.x
[88] 郭惠红, 高述民, 李凤兰, 等. 植物抗冻蛋白和抗寒基因表达的调控. 植物生理学报, 2003, 39(6):555-560.
[89] Rorat T, Szabala B M, Grygorowicz W J, et al. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta, 2006, 224(1):205-221.
doi: 10.1007/s00425-005-0200-1
[90] Borovskii G B, Stupnikova I V, Antipina A I, et al. Accumulation of proteins immunochemically related to dehydrins in mitochondria of plants exposed to low temperature. Doklady Biochemistry and Biophys, 2000, 371:46-49.
[91] Ellis R J. From chloroplasts to chaperones:how one thing led to another. Photosynthesis Research, 2004, 80:333-343.
pmid: 16328830
[92] Houde M, Daniel C, Lachapelle M, et al. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant Journal for Cell and Molecular Biology, 2010, 8(4):583-593.
doi: 10.1046/j.1365-313X.1995.8040583.x
[93] Houde M, Dallaire S, N'Dong D, et al. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnology Journal, 2010, 2(5):381-387.
doi: 10.1111/j.1467-7652.2004.00082.x
[94] 史学英, 田野, 李核, 等. 小麦K2型脱水蛋白DHN14响应非生物胁迫的功能分析. 西北农林科技大学学报(自然科学版), 2019, 47(5):29-37.
[95] Giordani T, Natali L, D Ercole A, et al. Expression of a dehydrin gene during embryo development and drought stress in ABA- deficient mutants of sunflower (Helianthus annuus L.). Plant Molecular Biology, 1999, 39(4):739-748.
pmid: 10350088
[1] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[2] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[3] Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81.
[4] Jian Liqun, Zhang Yifei, Yang Kejun, Wang Yufeng, Chen Tianyu, Zhang Jiwei, Zhang Jinsong, Li Qing, Liu Tianhao, Xiao Shanshan, Peng Cheng, Wang Baosheng. Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings [J]. Crops, 2020, 36(6): 61-68.
[5] Ren Yun, Liu Jing, Li Zhexin, Li Qiang. Root Morphology and Dry Matter Accumulation of Maize Seedlings in Response to Low Iron Stress [J]. Crops, 2020, 36(6): 69-79.
[6] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[7] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels [J]. Crops, 2019, 35(5): 28-36.
[9] Gu Jiaojiao,Hu Bowen,Jia Yan,Sha Hanjing,Li Jingwei,Ma Chao,Zhao Hongwei. Effects of Salt Stress on Root Related Traits and Yield of Rice [J]. Crops, 2019, 35(4): 176-182.
[10] Xia Wu,Deguo Lü,Guodong Du,Fengjun Yang. Cold Resistance Physiology Variance Analysis in Grafting and Tissue Culturing Seedlings of Sweet Cherry [J]. Crops, 2019, 35(1): 168-174.
[11] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[12] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[13] Xiyu Hao,Hongdan Wang,Zhichao Yin,Jie Liang,Fengxiang Yin,Jianjun Hao. Effects of PEG Stress on Drought Resistance at Seedling Stage of Adzuki Beans and the Establishment of Drought Resistance Identification System [J]. Crops, 2017, 33(4): 134-142.
[14] ,Lili Zhang,Ying Shi. Screening of Drought Resistant Germplasm Resources in Potato [J]. Crops, 2017, 33(4): 72-77.
[15] Ning Yang,Botong Zhao,Yuzhuo Bao,Yan Lü,Kankan Peng,Yu Tian,Junhong Wang,Jing Meng,Jing Cang. Effects of Exogenous ABA and Its Inhibitor Fluridone on Cold Resistance Indicators of Winter Wheat Tiller Node [J]. Crops, 2017, 33(4): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!