Crops ›› 2023, Vol. 39 ›› Issue (2): 1-9.doi: 10.16035/j.issn.1001-7283.2023.02.001
Si Zhenxing1(), Liang Zhizhe1, Qian Jiancai2, Xu Zicheng1, Li Junling1, Zhang Yudan1, Zhang Li2(), Jia Wei1()
[1] |
Weeks M E. The discovery of the elements. VI. Tellurium and selenium. Journal of Chemical Education, 1932, 9:474.
doi: 10.1021/ed009p474 |
[2] |
Schiavon M, Pilon-Smits E A. The fascinating facets of plant selenium accumulation-biochemistry,physiology,evolution and ecology. New Phytologist, 2017, 213:1582-1596.
doi: 10.1111/nph.14378 pmid: 27991670 |
[3] |
Islam M Z, Park B J, Kang H M, et al. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chemistry, 2020, 309:125763- 125768.
doi: 10.1016/j.foodchem.2019.125763 |
[4] |
Hussein H A A, Darwesh O M, Mekki B B, et al. Evaluation of cytotoxicity,biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnology Reports, 2019, 24:e00377.
doi: 10.1016/j.btre.2019.e00377 |
[5] |
Feng R W, Wang L Z, Yang J G, et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. Journal of Hazardous Materials, 2021, 402:123570.
doi: 10.1016/j.jhazmat.2020.123570 |
[6] | Meetu G, Shikha G. An overview of selenium uptake,metabolism,and toxicity in plants. Frontiers in Plant Science, 2017, 7:2074. |
[7] | Baker A J M, Mcgrath S P, Reeves R D, et al. Metal hyperaccumulator plants:A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of Contaminated Soil and Water, 2020, 11:85-107. |
[8] |
Dong Y, Zhang H, Hawthorn L, et al. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Research, 2003, 63:52-59.
pmid: 12517777 |
[9] | Plant J A, Kinniburgh D G, Smedley P L, et al. Arsenic and selenium. Treatise on Geochemistry, 2003, 9:17-66. |
[10] |
Ellis D R, Salt D E. Plants,selenium and human health. Current Opinion in Plant Biology, 2003, 6(3):273-279.
doi: 10.1016/S1369-5266(03)00030-X |
[11] | Fordyce F M. Selenium deficiency and toxicity in the environment. Essentials of Medical Geology, 2013, 16:375-415. |
[12] |
Wen H, Carignan J. Reviews on atmospheric selenium:emissions,speciation and fate. Atmospheric Environment, 2007, 41(34):7151-7165.
doi: 10.1016/j.atmosenv.2007.07.035 |
[13] |
Winkel L, Vriens B, Jones G, et al. Selenium cycling across soil- plant-atmosphere interfaces:A critical review. Nutrients, 2015, 7(6):4199-4239.
doi: 10.3390/nu7064199 pmid: 26035246 |
[14] |
White P J. Selenium accumulation by plants. Annals of Botany, 2016, 117:217-235.
doi: 10.1093/aob/mcv180 pmid: 26718221 |
[15] | 贾玮. 土壤施硒油菜秸秆溶解性有机质对核盘菌的抑制作用及其机理. 武汉:华中农业大学, 2019. |
[16] |
Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health:A review. Environment International, 2018, 112:294-309.
doi: 10.1016/j.envint.2017.12.035 |
[17] |
Presser T S, Barnes I. Dissolved constituents including selenium in waters in the vicinity of kesterson national wildlife refuge and the west grassland,fresno and merced counties,California. Chemical Research in Toxicology, 1985, 27:568-575.
doi: 10.1021/tx400428f |
[18] | 徐亚军. 水体中无机硒形态分析方法的研究及应用. 厦门:厦门大学, 2018. |
[19] | 范书伶, 王平, 张珩琳, 等. 环境中硒的迁移、微生物转化及纳米硒应用研究进展. 科学通报, 2020, 65(26):2853-2862. |
[20] |
Martens D A, Suarez D L. Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environmental Science and Technology, 1997, 31:133-139.
doi: 10.1021/es960214+ |
[21] |
Tan L C, Nancharaiah Y V, Hullebusch E, et al. Selenium:environmental significance,pollution,and biological treatment technologies. Biotechnology Advances, 2016, 34:886-907.
doi: 10.1016/j.biotechadv.2016.05.005 |
[22] |
Nancharaiah Y V, Lens P N L. Selenium biomineralization for biotechnological applications. Trends Biotechnology, 2015, 33:323-330.
doi: 10.1016/j.tibtech.2015.03.004 |
[23] | Yee N, Ma J, Dalia A, et al. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Applied and Environmental Microbiology, 2007, 73:1914-1920. |
[24] |
Nelson D C, Casey W H, Sison J D, et al. Selenium uptake by sulfur-accumulating bacteria. Geochim Cosmochim Acta, 1996, 60:3531-3539.
doi: 10.1016/0016-7037(96)00221-9 |
[25] |
Kessi J, Hanselmann K W. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. The Journal of Biological Chemistry, 2004, 279:50662-50669.
doi: 10.1074/jbc.M405887200 |
[26] |
Li D B, Cheng Y Y, Wu C, et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Scientific Reports, 2014, 4:3735.
doi: 10.1038/srep03735 |
[27] | 樊俊. 硒在土壤-植物中的转化及烟株对硒的富集和抗性机理研究. 武汉:华中农业大学, 2015. |
[28] | White P J. Selenium metabolism in plants. Biochimica et Biophysica Acta-General Subjects, 2018:2333-2342. |
[29] | Anamika K, Lalit G, Jechan L, et al. Selenium in soil- microbe-plant systems:sources,distribution,toxicity,tolerance,and detoxification. Critical Reviews in Environmental Science and Technology, 2021, 7:1-42. |
[30] |
陈锦平, 刘永贤, 曾成城, 等. 植物对土壤硒的吸收转化研究进展. 生物技术进展, 2017, 7(5):421-427.
doi: 10.19586/j.2095-2341.2017.0104 |
[31] |
Wang D, Zhou F, Yang W X, et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 2017, 182:284-292.
doi: S0045-6535(17)30709-9 pmid: 28500973 |
[32] | 宋卫卫. 有机硒在不同土壤中转化初探. 咸阳:西北农林科技大学, 2015. |
[33] | 雷红量, 丛文宇, 蔡照磊, 等. 植物根系与叶片吸收硒的关键过程及影响因素. 植物营养与肥料学报, 2021, 27(8):1456- 1467. |
[34] |
Barberon M, Berthomieu P, Clairotte M, et al. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytologist, 2008, 180(3):608-619.
doi: 10.1111/j.1469-8137.2008.02604.x pmid: 18761637 |
[35] |
Rouached H, Wirtz M, Alary R, et al. Differential regulation of the expression of two high-affinity sulfate transporters,SULTR1.1 and SULTR1.2,in Arabidopsis. Plant Physiology. 2008, 147:897-911.
doi: 10.1104/pp.108.118612 pmid: 18400935 |
[36] |
Elie E K, Nicole C, Hatem R, et al. Characterization of a selenate-resistant Arabidopsis mutant:root growth as a potential target for selenate toxicity. Plant Physiology, 2007, 143:1231- 1241.
doi: 10.1104/pp.106.091462 |
[37] |
Yoshimoto N. Phloem-localizing sulfate transporter,Sultr1;3,mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiology, 2003, 131(4):1511-1517.
doi: 10.1104/pp.014712 pmid: 12692311 |
[38] |
Boldrin P F, De Figueiredo M A, Yang Y, et al. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiologia Plantarum, 2016, 158(1):80-91.
doi: 10.1111/ppl.2016.158.issue-1 |
[39] |
El Mehdawi A F, Jiang Y, Guignardi Z S, et al. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. The New Phytologist, 2018, 217:194-205.
doi: 10.1111/nph.2018.217.issue-1 |
[40] |
Cao M J, Wang Z, Wirtz M, et al. SULTR3; 1 is a chloroplast- localized sulfate transporter in Arabidopsis thaliana. The Plant Journal, 2013, 73(4):607-616.
doi: 10.1111/tpj.2013.73.issue-4 |
[41] |
Kataoka T, Hayashi N, Yamaya T, et al. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiology, 2004, 136:4198-4204.
doi: 10.1104/pp.104.045625 pmid: 15531709 |
[42] |
Boldrin P F, De Figueiredo M A, Yang Y, et al. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiologia Plantarum, 2016, 158(1):80-91.
doi: 10.1111/ppl.2016.158.issue-1 |
[43] |
Kataoka T, Watanabe-Takahashi A, Hayashi N, et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell, 2004, 16(10):2693-2704.
doi: 10.1105/tpc.104.023960 pmid: 15367713 |
[44] |
Zhang L H, Abdel-Ghany S E, Freeman J L, et al. Investigation of selenium tolerance mechanisms in Arabidopsis thaliana. Physiologia Plantarum, 2006, 128(2):212-223.
doi: 10.1111/ppl.2006.128.issue-2 |
[45] |
Shen R, Gou Y, Yu T, et al. Effects of selenate on Se,flavonoid,and glucosinolate in broccoli florets by combined transcriptome and metabolome analyses. Food Research International, 2021, 146:110463.
doi: 10.1016/j.foodres.2021.110463 |
[46] |
Enrico M, Massonneau A, Nathalie F. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiology, 2000, 41(11):1175-1186.
doi: 10.1093/pcp/pcd059 |
[47] |
Shrift A, Ulrich J M. Transport of selenate and selenite into astragalus roots. Plant Physiologist, 1969, 44:893-896.
doi: 10.1104/pp.44.6.893 |
[48] |
Li H F, Mcgrath S P, Zhao F J. Selenium uptake,translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 2010, 178(1):92-102.
doi: 10.1111/nph.2008.178.issue-1 |
[49] |
Song Z, Shao H, Huang H, et al. Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum. Environmental and Experimental Botany, 2017, 137:158-165.
doi: 10.1016/j.envexpbot.2017.02.011 |
[50] |
Zhang L, Hu B, Li W, et al. OsPT2,a phosphate transporter,is involved in the active uptake of selenite in rice. New Phytologist, 2014, 201(4):1183-1191.
doi: 10.1111/nph.2014.201.issue-4 |
[51] |
Zhao X Q, Mitani N, Yamaji N, et al. Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiologist, 2010, 153(4):1871-1877.
doi: 10.1104/pp.110.157867 |
[52] |
Jiang Y, Zeng Z H, Bu Y, et al. Effects of selenium fertilizer on grain yield,Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil and Environment, 2015, 61(8):371-377.
doi: 10.17221/284/2015-PSE |
[53] | 彭琴, 李哲, 梁东丽, 等. 不同作物对外源硒动态吸收、转运的差异及其机制. 环境科学, 2017, 38(4):1667-1674. |
[54] |
El Mehdawi A F, Lindblom S D, Cappa J J, et al. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-ray microprobe analysis. International Journal of Phytoremediation, 2015, 17(8):753-765.
doi: 10.1080/15226514.2014.987374 pmid: 26030363 |
[55] |
李玉梅, 王根林, 李艳, 等. 水稻对有机态硒的吸收与积累. 中国农学通报, 2017, 33(10):7-11.
doi: 10.11924/j.issn.1000-6850.casb16050144 |
[56] |
Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Archives of Environmental Contamination and Toxicology, 2013, 65:458-465.
doi: 10.1007/s00244-013-9926-0 pmid: 23793939 |
[57] |
Abrams M M, Burau R G, Zasoski R J. Organic selenium distribution in selected California soils. Soil Science Society of America Journal, 1990, 54(4):979-982.
doi: 10.2136/sssaj1990.03615995005400040007x |
[58] | 邓坤. 水稻根系吸收和转运硒代蛋氨酸的机制研究. 洛阳:河南科技大学, 2015. |
[59] | 王琪.水稻和小麦对有机硒的吸收、 转运及形态转化机制. 北京: 中国农业大学, 2017. |
[60] |
Zhang L H, Hu B, Deng K, et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnology Journal, 2019, 17(6):1058- 1068.
doi: 10.1111/pbi.13037 pmid: 30466149 |
[61] |
Victoria F, Eustaquio G P, Thomas E. Foliar water and solute absorption:an update. The Plant Journal, 2021, 105(4):870-883.
doi: 10.1111/tpj.v105.4 |
[62] | Du W J, Yu D Y, Fu S X. Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L.) Merr.]. Agricultural Sciences in China, 2009, 8(5):529-537. |
[63] |
Raven J A. Selection pressures on stomatal evolution. New Phytologist, 2002, 153(3):371-386.
doi: 10.1046/j.0028-646X.2001.00334.x pmid: 33863217 |
[64] | Eichert T, Kurtz A, Steiner U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 2008:134,151-160. |
[65] |
Chen Z, Zhao P X, Miao Z Q, et al. SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiology, 2019, 180:593-604.
doi: 10.1104/pp.18.01439 pmid: 30837346 |
[66] |
Sors T G, Ellis D R, Salt D E. Selenium uptake,translocation,assimilation and metabolic fate in plants. Photosynthesis Research, 2005, 86(3):373-389.
pmid: 16307305 |
[67] | Setya A, Murillo M, Leustek T. Sulfate reduction in higher plants:molecular evidence for a novel 5′-adenylylsulfate reductase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:13383-13388. |
[68] |
Sors T G, Ellis D R, Na G N, et al. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. The Plant Journal, 2010, 42(6):785-797.
doi: 10.1111/tpj.2005.42.issue-6 |
[69] |
Fisher B, Yarmolinsky D, Abdel-Ghany S, et al. Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin. Plant Physiology Biochemistry, 2016, 106:228-235.
doi: 10.1016/j.plaphy.2016.05.004 |
[70] |
Hsieh H S, Ganther H E. Acid-volatile selenium formation catalyzed by glutathione reductase. Biochemistry, 1975, 14(8):1632-1636.
pmid: 235962 |
[71] |
Bogdanova N, Hell R. Cysteine synthesis in plants:protein- protein interactions of serine acetyltransferase from Arabidopsis thaliana. The Plant Journal, 1997, 11(2):251-262.
doi: 10.1046/j.1365-313X.1997.11020251.x |
[72] |
Anderson J C D W. Incorporation of cysteine and selenocysteine into cystathionine and selenocystathionine by crude extracts of spinach. Phytochemistry, 1988, 27(11):3453-3460.
doi: 10.1016/0031-9422(88)80747-7 |
[73] |
Zhou Z S, Smith A E, Matthews R G. L-Selenohomocysteine:one-step synthesis from L-selenomethionine and kinetic analysis as substrate for methionine synthases. Bioorganic and Medicinal Chemistry Letters, 2000, 10(21):2471-2475.
pmid: 11078203 |
[74] |
Tagmount A, Terry B N. An essential role of S-adenosyl- L-methionine:L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium-methionine,the precursor of volatile selenium. Plant Physiology, 2002, 130(2):847-856.
doi: 10.1104/pp.001693 |
[75] |
Lewis B G, Johnson C M, Broyer T C. Volatile selenium in higher plants the production of dimethyl selenide in cabbage leaves by enzymatic cleavage of Se-methyl selenomethionine selenonium salt. Plant and Soil, 1974, 40:107-118.
doi: 10.1007/BF00011413 |
[76] |
De S M P, Mel L C, Mulholland M M, et al. Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian Mustard. Plant Physiology, 2000, 122:1281-1288.
pmid: 10759525 |
[77] | 李鸣凤, 邓小芳, 付小丽, 等. 不同硒源对小麦生长、硒吸收利用以及玉米后效的影响. 农业环境科学学报, 2017, 36(1):1-7. |
[78] | 邓小芳, 吕臣浩, 黄立强, 等. 喷施时期和硒源对‘金桃’猕猴桃硒吸收累积及主要品质指标的影响. 果树学报, 2018, 35(11):1385-1392. |
[79] | 曹升, 王颖, 陈会鲜, 等. 外源硒对食用木薯品质的影响研究. 作物杂志, 2020(1):168-172. |
[80] | 史雅涵, 杜天庆, 翟红梅, 等. 硒对芸豆种子萌发、生理特性及营养品质的影响. 作物杂志, 2021(3):210-216. |
[81] | 王光. 花生芽富硒的机理及有机硒的生物活性研究. 广州:华南理工大学, 2017. |
[82] | 厉舒祯, 沈文丽, 邓晔, 等. 微生物还原Se(Ⅵ)和Se(Ⅳ)合成SeNPs机理研究新进展. 应用与环境生物学报, 2017, 23(3):579-585. |
[83] | 陈梦, 罗向光, 谷俊涛, 等. 印度芥菜BjSMT基因的克隆及抗硒分析. 河北农业大学学报, 2018, 41(5):13-18. |
[84] |
Leduc D L, Tarun A S, Montes-Bayon M, et al. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiology, 2004, 135(1):377-383.
pmid: 14671009 |
[85] |
Van Hoewyk D, Garifullina G F, Ackley A R, et al. Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiology, 2005, 139(3):1518-1528.
doi: 10.1104/pp.105.068684 |
[1] | Wang Yuehua, Zhou Junxue, Ma Yilin, Ma Junhong, Wang Yanfang, Zhao Shimin, Shen Hongtao, Li Youjun, Liu Ling. Effects of Different Harvest Maturity of Upper Six Leaves on Physiological Metabolism and Quality of Flue-Cured Tobacco Line LY1306 [J]. Crops, 2023, 39(2): 171-177. |
[2] | Bian Shuhui, Xing Guofang, Liang Xin, Zhang Shuwei, Wang Jianing, Ye Haoyu. Effects of Different Forms Selenium and Dosage on Foxtail Millet Growth and Physiology at Seedling Stage [J]. Crops, 2023, 39(1): 152-157. |
[3] | Liu Sujun, Meng Meilian, Suriguga . Research on the Effects of Gene Expression in Sugar Metabolism Pathway of Potato by Drought Stress and Rehydration [J]. Crops, 2023, 39(1): 38-45. |
[4] | Wu Zishuai, Liu Guanglin, Li Hu, Luo Qunchang, Chen Chuanhua, Zhu Qi’nan. Effects of Nitrogen Application Rate on Rice Quality of High Quality Conventional Indica Rice [J]. Crops, 2023, 39(1): 84-88. |
[5] | Fan Duanyang, Yin Meiqiang, Wen Yinyuan, Guo Zhiyao, Wen Yanjie, Wang Yuqi, Sun Min, Gao Zhiqiang. Effects of Nitrate Nitrogen and Ammonium Nitrogen Ratio on the Growth and Nitrogen Utilization of Millet Seedlings [J]. Crops, 2023, 39(1): 96-102. |
[6] | Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12. |
[7] | Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220. |
[8] | Zhou Chao, Zhang Tiantian, Yang Li’na, Zhang Yong, Ma Chong, Dai Weicheng, Wu Cuixia, Song Min. Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption [J]. Crops, 2022, 38(5): 261-266. |
[9] | Dong Linlin, Shen Mingxing, Shi Linlin, Shen Yuan, Wang Haihou, Lu Changying. The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake [J]. Crops, 2022, 38(5): 69-77. |
[10] | Wang Baojun, Cheng Wangda, Shen Yaqiang, Qin Yebo, Su Yao, Chen Gui, Lu Chenni, Zhang Hongmei. Effects of Nitrogen Fertilizer Reduction on Grain Protein of High Quality Rice and Its Rationality Evaluation [J]. Crops, 2022, 38(3): 168-173. |
[11] | Liu Panfeng, Qin Jie, Hao Shuangnan, Wang Danli, Yang Wude, Feng Meichen, Song Xiaoyan. Effects of Selenium Concentration, Application Stage and Method on Yield and Grain Selenium Content of Different Millet Varieties [J]. Crops, 2022, 38(2): 182-188. |
[12] | Lu Dandan, Ye Miao, Zhang Zujian. Research Progress on Rice Protein and Its Components and Their Effects on Rice Quality [J]. Crops, 2022, 38(2): 28-34. |
[13] | Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103. |
[14] | Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153. |
[15] | Zhang Siwei, Li Jin’ao, Liu Boyuan, Jiang Yuchen, Zhong Qiu, Lei Yunkang, Zhang Mingyue, Zhao Mingqin. Effects of Topping Method on Nitrogen Accumulation and Quality of Cigar Tobacco Leaves [J]. Crops, 2022, 38(1): 184-189. |
|