Crops ›› 2023, Vol. 39 ›› Issue (2): 178-185.doi: 10.16035/j.issn.1001-7283.2023.02.026

Previous Articles     Next Articles

Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress

Liang Ping1(), Zhang Yongqing1,2(), Zhang Meng1, Xue Xiaojiao1, Li Pingping1, Zhang Wenyan1, Wang Dan1, Zhao Gang2   

  1. 1College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
    2College of Geography, Shanxi Normal University, Taiyuan 030000, Shanxi, China
  • Received:2022-04-15 Revised:2022-12-15 Online:2023-04-15 Published:2023-04-11

Abstract:

Using Longli No.4 as material, the root canal soil column cultivation experiment was carried out, three kinds of salt-alkali conditions were set included mild salt-alkali stress (S1, 3g/kg), moderate salt-alkali stress (S2, 5g/kg), and severe salt-alkali stress (S3, 7g/kg), the four kinds of soil conditioner polyacrylamide (PAM) application depth [0-10 (PAM0), 10-20 (PAM10), 20-30 (PAM20) and 0-30cm (PAM30)] were set. They were totally randomized trial combinations, as well as control group (S0) without saline and PAM, a total of 13 treatments were performed. The effects of PAM application depth on growth and physiological indexes of quinoa under different salt-alkali stress conditions were studied. The results showed that, salt-alkali stress and PAM application significantly affected the morphological and physiological indexes of quinoa. Under the premise of reasonable application of PAM, compared with the control, the lower degree of salt stress was more beneficial to the growth of quinoa, and even the growth of quinoa was not significantly affected under moderate salt stress, indicating that quinoa had a strong salt tolerance. When salt-alkali stress reached severe stress (S3), the growth of quinoa was significantly inhibited by PAM compared with the control, although different PAM concentrations had a certain effects on the growth of the upper part of quinoa. Under different salt-alkali stress conditions, the effects of PAM0 on the growth and physiological indexes of quinoa were best. The results of subordination function showed that the growth and salt-resistance of quinoa under different treatment conditions were S1>S2>S3, PAM0> PAM30> PAM10> PAM20, indicating the concentrated application of PAM on soil surface was the best way to alleviate the adverse effects of salt stress on quinoa.

Key words: Quinoa, Saline alkali stress, PAM, Application depth, Physiological index, Root distribution

Table 1

Growth of aboveground parts of quinoa at obvious sequence stage under different salt alkali stress and PAM treatments"

盐碱处理Saline-alkali treatment PAM处理PAM treatment 株高Plant height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (mm2)
S0 89.33±9.02c 7.68±0.62b 2265.87±139.84c
S1 PAM0 111.00±1.73a 11.10±0.77a 2633.50±10.45a
PAM10 89.33±9.02c 8.14±0.81b 2439.13±30.56abc
PAM20 86.67±5.77c 8.10±1.78b 2367.17±150.20bc
PAM30 101.33±1.53b 8.15±0.37b 2558.63±224.13ab
S2 PAM0 99.00±1.73b 7.76±1.25b 2406.57±109.27abc
PAM10 47.67±3.21d 5.22±0.47c 1139.27±117.71d
PAM20 34.67±5.13e 3.81±0.49cd 1128.07±59.15d
PAM30 90.00±5.00c 7.56±0.42b 2376.83±25.03bc
S3 PAM0 41.00±2.64de 5.00±0.96c 1300.37±231.94d
PAM10 22.33±3.05f 3.05±0.49de 721.77±167.96e
PAM20 19.00±5.29f 2.03±0.08e 585.52±33.38e
PAM30 33.33±2.89e 3.99±0.69cd 1299.27±135.81d
方差分析ANOVA
盐碱处理Saline-alkali treatment (S) <0.001 <0.001 <0.001
PAM处理PAM treatment (PAM) <0.001 <0.001 <0.001
S×PAM 0.001 0.025 0.010

Fig.1

Root length of quinoa in different soil layers at the obvious sequence stage under different saline alkali stress and PAM treatments"

Fig.2

Root surface areas of different soil layers at the obvious sequence stage of quinoa under different saline alkali stress and PAM treatments"

Fig.3

Effects of different saline alkali stress and PAM treatments on the antioxidant enzyme activities of quinoa Different lowercase letters indicated the differences between different saline alkali conditions and different PAM application depths (P < 0.05). The same below"

Fig.4

Effects of different saline alkali stress and PAM treatments on root activities of quinoa"

Table 2

Membership function values of test measurement indexes"

盐碱处理
Saline alkali treatment
PAM处理
PAM treatment
隶属函数值Membership function value 平均值
Average
排序
Ranking
X1 X2 X3 X4 X5 X6 X7 X8 X9
S0 0.52 0.50 0.66 0.54 0.52 0.35 0.41 0.49 0.56 0.5056 6
S1 PAM0 0.50 0.58 0.58 0.50 0.59 0.47 0.50 0.57 0.59 0.5422 1
PAM10 0.52 0.54 0.45 0.58 0.54 0.41 0.55 0.64 0.50 0.5256 3
PAM20 0.52 0.37 0.57 0.65 0.37 0.56 0.65 0.40 0.51 0.5111 5
PAM30 0.44 0.42 0.60 0.65 0.66 0.54 0.53 0.46 0.47 0.5300 2
S2 PAM0 0.44 0.57 0.48 0.35 0.40 0.64 0.62 0.64 0.50 0.5156 4
PAM10 0.61 0.44 0.43 0.36 0.59 0.48 0.43 0.58 0.52 0.4933 8
PAM20 0.33 0.51 0.54 0.46 0.56 0.44 0.56 0.46 0.53 0.4878 9
PAM30 0.50 0.54 0.49 0.39 0.37 0.47 0.58 0.62 0.57 0.5033 7
S3 PAM0 0.50 0.47 0.58 0.58 0.58 0.42 0.57. 0.56 0.59 0.4756 10
PAM10 0.56 0.39 0.53 0.46 0.35 0.47 0.40 0.57 0.38 0.4567 12
PAM20 0.40 0.36 0.35 0.40 0.44 0.48 0.47 0.39 0.57 0.4289 13
PAM30 0.58 0.12 0.61 0.49 0.52 0.35 0.44 0.60 0.45 0.4622 11
[1] 李建国, 濮励杰, 朱明, 等. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012, 67(9):1233-1245.
[2] 任永峰, 梅丽, 杨亚东, 等. 播期对藜麦农艺性状及产量的影响. 中国生态农业学报, 2018, 26(5):643-656.
[3] 申瑞玲, 张文杰, 董吉林, 等. 藜麦的营养成分、健康促进作用及其在食品工业中的应用. 中国粮油学报, 2016, 31(9):150-155.
[4] White P L, Alvistur E, Dias C, et al. Nutrient content and protein quality of quinoa and cafiihua,edible seed products of the Andes Mountais. Agricultural and Food Chemistry, 1955, 3(6):351-355.
[5] Ruiz K B, Biondi S, Oses R, et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 2014, 34(2):349-359.
doi: 10.1007/s13593-013-0195-0
[6] Garcia M, Raes D, Jacobsen S E, et al. Agroclimatic constraints for rainfed agriculture in the Bolivian Altiplano. Journal of Arid Environments, 2007, 71(1):109-121.
doi: 10.1016/j.jaridenv.2007.02.005
[7] Vacher J J. Responses of two main Andean crops,quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: Significance of local adaptation. Agriculture Ecosystems & Environment, 1998, 68(1/2):99-108.
doi: 10.1016/S0167-8809(97)00140-0
[8] Jacobsen S E, Liu F, Jensen C R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 2009, 122(2):281-287.
doi: 10.1016/j.scienta.2009.05.019
[9] Hariadi Y, Marandon K, Tian Y, et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 2010, 62(1):185-193.
doi: 10.1093/jxb/erq257
[10] Ruffino A, Rosa M, Hilal M, et al. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil, 2010, 326(1/2):213-224.
doi: 10.1007/s11104-009-9999-8
[11] 韩小霞. 土壤结构改良剂研究综述. 安徽农学通报, 2009, 15(19):110-112.
[12] 吴帆, 陈洪凯. 高吸水保水材料研究现状及趋势综述. 科技创新导报, 2014, 11(29):31-33.
[13] 孙蓟锋, 王旭. 土壤调理剂的研究和应用进展. 中国土壤与肥料, 2013(1):1-7.
[14] 曹雨桐, 佘冬立. 施用生物炭和聚丙烯酰胺对海涂围垦区盐碱土水力性质的影响. 应用生态学报, 2017, 28(11):3684-3690.
doi: 10.13287/j.1001-9332.201711.014
[15] 张雪辰, 陈诚, 苏里坦, 等. 聚丙烯酰胺改良盐渍土壤的适宜用量研究. 土壤, 2017, 49(6):1216-1220.
[16] 王明华, 李明, 高祺, 等. 改良剂对苏打盐碱土玉米幼苗生长和生理特性的影响. 生态学杂志, 2016, 35(11):2966-2973.
[17] 王相平, 杨劲松, 张胜江, 等. 改良剂施用对干旱盐碱区棉花生长及土壤性质的影响. 生态环境学报, 2020, 29(4):757-762.
doi: 10.16258/j.cnki.1674-5906.2020.04.015
[18] 陈廷钦. 土壤调理剂及应用进展. 云南大学学报(自然科学版), 2011, 33(增1):338-342.
[19] 尹梅, 苏帆, 付利波, 等. 一种土壤调理剂对玉米幼苗抗旱性的影响. 干旱地区农业研究, 2015, 33(4):190-196.
[20] Pypers P, Verstraete S, Cong P T, et al. Changes in mineral nitrogen,phosphorus availability and salt-extractable aluminium following the application of green manure residues in two weathered soils of South Vietnam. Soil Biology & Biochemistry, 2005, 37(1):163-172.
doi: 10.1016/j.soilbio.2004.06.018
[21] 冯鑫炜, 乔帅帅, 曹丹妮, 等. 盐分胁迫对白刺幼苗生长及生理指标的影响. 山西农业科学, 2015, 43(8):927-931.
[22] 古丽内尔·亚森, 杨瑞瑞, 曾幼玲. 混合盐碱胁迫对灰绿藜(Chenopodium glaucum L.)种子萌发的影响. 生态学杂志, 2014, 33(1):76-82.
[23] 马鑫, 魏占民, 张凯, 等. 低分子量聚丙烯酰胺对盐渍化土壤水动力参数的影响. 土壤, 2014, 46(3):518-525.
[24] 赵军, 唐峻岭, 李斌, 等. 藜麦高产高效栽培技术规程. 中国种业, 2020(8):112-113.
[25] Shi J, Fu X Z, Peng T, et al. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 2010, 30(7):914-922.
doi: 10.1093/treephys/tpq030 pmid: 20462936
[26] 郑炳松. 现代植物生理生化研究技术. 北京: 气象出版社, 2006.
[27] Halliwell B, Foyer C H. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta, 1978, 139(1):9-17.
doi: 10.1007/BF00390803 pmid: 24414099
[28] Tian H U, Yang H L, Tang Q, et al. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) Spectrometer Engine. Spectroscopy and Spectral Analysis, 2014, 34(10):2808-2814.
pmid: 25739230
[29] Busscher W J, Novak J M, Caesar-Tonthat T C. Organic matter and polyacrylamide amendment of Norfolk loamy sand. Soil & Tillage Research, 2007, 93(1):171-178.
[30] 李佳佳, 李俊颖, 王定勇. PAM对沙质土壤持水性能影响的模拟研究. 西南大学学报(自然科学版), 2010, 32(3):93-97.
[31] Levy G J, Ben-Hur M, Agassi M. The effect of polyacrylamide on runoff,erosion,and cotton yield from fields irrigated with moving sprinkler systems. Irrigation Science, 1991, 12(2):55-60.
[32] 董英, 郭绍辉, 詹亚力. 聚丙烯酰胺的土壤改良效应. 高分子通报, 2004(5):83-87.
[33] 王丹, 黄超, 李小东, 等. 脱硫石膏配施不同量有机物料对盐碱土壤改良效果及作物产量的影响. 干旱地区农业研究, 2019, 37(1):34-40.
[34] 唐泽军, 雷廷武, 张晴雯, 等. 降雨及聚丙烯酰胺(PAM)作用下土壤的封闭过程和结皮的形成. 生态学报, 2002, 22(5):674-681.
[35] 员学锋. PAM的土壤保水、保肥及作物增产效应研究. 杨凌:西北农林科技大学, 2003.
[36] 王春霞, 王全九, 吕廷波, 等. 添加化学改良剂的砂质盐碱土入渗特征试验研究. 水土保持学报, 2014, 28(1):31-35.
[37] 朱德峰, 林贤青, 曹卫星. 水稻深层根系对生长和产量的影响. 中国农业科学, 2001, 34(4):429-432.
[38] 弋良朋, 王祖伟. 盐胁迫下3种滨海盐生植物的根系生长和分布. 生态学报, 2011, 31(5):1195-1202.
[39] 马新明, 席磊, 熊淑萍, 等. 大田期烟草根系构型参数的动态变化. 应用生态学报, 2006, 17(3):3373-3376.
[40] 禹明慧, 孟祥怀, 段昌群, 等. 蚯蚓介导下镉胁迫对土壤理化性质和玉米生长的影响. 环境化学, 2020, 39(10):2654-2665.
[41] 季延海, 于平彬, 武占会, 等. 低浓度NaCl对水培韭菜生长、产量及品质的影响. 中国生态农业学报, 2015, 23(5):628-633.
[42] 杨发荣, 刘文瑜, 黄杰, 等. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 2017, 26(12):77-88.
[43] 许斌, 牛娜, 赵文瑜, 等. 天然型藜麦品种抗盐碱生理特性比较研究. 土壤, 2020, 52(1):81-89.
[44] 员学锋, 汪有科, 吴普特, 等. PAM对土壤物理性状影响的试验研究及机理分析. 水土保持学报, 2005, 19(2):37-40.
[45] 李飞, 胡振华. 土壤调理剂(PAM)的水土保持作用机理及动态研究. 山西水土保持科技, 2012(2):1-3.
[46] 樊瑞苹, 周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响. 草业学报, 2012, 21(1):112-117.
[47] Hernández J A, Jiménez A, Mullineaux P, et al. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell & Environment, 2010, 23(8):853-862.
[48] 徐田军, 董志强, 兰宏亮, 等. 低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响. 作物学报, 2012, 38(2):352-359.
[49] Li B B, Wei X H, Xu Y, et al. The causes of Gentiana straminea Maxim. seeds dormancy and the methods for its breaking. Acta Ecologica Sinica, 2013, 33(15):4631-4638.
doi: 10.5846/stxb
[50] 谭淑端, 朱明勇, 党海山, 等. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7):3685-3691.
[51] 张梅, 刘君, 杨志民, 等. 高温胁迫对草地早熟禾抗氧化酶活性及其同工酶图谱的影响. 草地学报, 2014, 22(6):1308-1317.
doi: 10.11733/j.issn.1007-0435.2014.06.025
[1] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[2] Shen Wenyuan, Chen Xinyu, Yu Xurun, Wu Yunfei, Chen Gang, Xiong Fei. Advance of Effects of Rhizosphere Temperature Stress on Morphology and Physiology of Wheat Root [J]. Crops, 2022, 38(6): 23-32.
[3] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[4] Wang Siyu, Zuo Wenbo, Zhu Kaili, Guo Huimin, Xing Bao, Guo Yuqing, Bao Yuying, Yang Xiushi, Ren Guixing. Analysis and Evaluation of Agronomic Characteristics and Nutritional Qualities of 71 Quinoa Accessions [J]. Crops, 2022, 38(3): 63-72.
[5] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[6] Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81.
[7] Jian Liqun, Zhang Yifei, Yang Kejun, Wang Yufeng, Chen Tianyu, Zhang Jiwei, Zhang Jinsong, Li Qing, Liu Tianhao, Xiao Shanshan, Peng Cheng, Wang Baosheng. Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings [J]. Crops, 2020, 36(6): 61-68.
[8] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[9] Wang Yanqing,Li Yongjun,Li Chunhua,Lu Wenjie,Sun Daowang,Yin Guifang,Hong Bo,Wang Lihua. Correlation and Path Analysis of the Main Agronomic Traits and Yield per Plant of Quinoa [J]. Crops, 2019, 35(6): 156-161.
[10] Hongliang Cui,Bao Xing,Qing Yao,Qinping Zhang,Xiushi Yang,Yang Yao,Guixing Ren,Peiyou Qin. SWOT Analysis on Development of Quinoa Industry in Ili Valley of Xinjiang [J]. Crops, 2019, 35(1): 32-37.
[11] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[12] Xia Wu,Deguo Lü,Guodong Du,Fengjun Yang. Cold Resistance Physiology Variance Analysis in Grafting and Tissue Culturing Seedlings of Sweet Cherry [J]. Crops, 2019, 35(1): 168-174.
[13] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[14] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[15] Xiuxiu Luo,Peiyou Qin,Xiushi Yang,Li Mei,Guixing Ren. Changes of Functional Component Content and Antioxidant Activity during the Growth of Quinoa Sprouts [J]. Crops, 2018, 34(2): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!