Crops ›› 2023, Vol. 39 ›› Issue (6): 1-10.doi: 10.16035/j.issn.1001-7283.2023.06.001

    Next Articles

Stomatal Phenotypic Identification and Research Progress in Maize Leaves

Jin Yu1,2,3,4(), Guo Xinyu1,2,3, Zhang Ying1,2,3, Li Dazhuang1,2,3,4, Wang Jinglu1,2,3()   

  1. 1Beijing Key Laboratory of Digital Plant, Beijing 100097, China
    2Research Center of Information Technology,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    3National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
    4Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-07-08 Revised:2023-10-12 Online:2023-12-15 Published:2023-12-15

Abstract:

The leaf stomatas are the direct channel between plants and the outer enviroment, which play an important role in regulating the carbon and water cycles during the growth of maize plants and influence the intensity of transpiration and photosynthesis. This paper first outlined the morphological structure and main functional characteristics of maize leaf stomata. After classifying destructive and non-destructive stomatal phenotype acquisition techniques, manual, semi-automated, and automated stomatal phenotype analysis techniques were applied. The research progress of stomatal phenotype characterization in maize leaves and the status of genes affecting stomatal morphogenesis were summarized. This paper also presented the possible challenges and opportunities for stomatal research. It provides a reference for the selection, identification and genetic improvement of maize varieties based on stomatal phenotypes.

Key words: Maize, Leaves, Stomata, Phenotype, Research progress

Fig.1

Diagram of stomatal morphology on leaves (a) the stomata of maize leaves; (b) the stomata of dicotyledons and monocotyledons leaves"

Table 1

Phenotypic extraction of leaf stomata"

发展阶段
Stage of
development
参考文献
Reference
表型解析方法
Phenotypic parsing
method
作物
Crop
主要表型特征
Main phenotypic characteristics
特点
Characteristic
人工
Manpower
[37,45-46]

显微镜测微尺、计数室、Veeder-Root、样带法等
菊花(Chrysanthemum morifolium)、大麦(Hordeum vulgare)、小叶杨(Populus simonii 气孔数目、气孔密度、气孔长度、气孔宽度、气孔开度
5min/视野,较为准确,耗时长
半自动化
Semi-
automatization
[12]

SMileView

樟树(Cinnamomum camphora

气孔总数、张开气孔数、闭合气孔数,开放气孔比率、气孔长度、气孔宽度、气孔开度 (1)适应不同图像需求;
(2)有效降低计算复杂度;(3)2min/张,极大降低了人力投入

[53]
Mv-1图像分析板和JAVA图像分析软件 蚕豆(Vicia faba
气孔孔径
[54]


Motic Images Advance


东栎(Quercus liaotungensis)、虎榛子(Ostryopsis davidiana)、酸枣(Ziziphus jujuba var. spinosa)和狼牙刺(Sophora viciifolia 气孔密度、气孔长度、气孔宽度、气孔面积

[55,59]

Auto Desk Inventor Professional 2011、Auto CAD 2010和Arc GIS10.0 冬小麦(Triticum aestivum

气孔密度、气孔长度、气孔宽度、气孔面积、气孔周长、气孔形状指数和气孔分布格局
[56]

Image J

费菜(Phedimus aizoon)、刺槐(Robinia pseudoacacia)等40种
气孔密度、气孔长度、气孔宽度、气孔面积、气孔开度、气孔张开比
[57]
Scope Image 9.0
桉树(Eucalyptus robusta
气孔长度、气孔宽度、孔径长度、气孔面积
[58]

UTHSCSA ImageTool

茄子(Solanum pennelli

气孔密度、气孔(长度、宽度、面积)、孔隙(长度、宽度、面积)、气孔深度
自动化
Automation
[60] 级联分类器 桉树(Eucalyptus robusta 气孔密度、气孔分布 (1)自动化识别,平均精度可达98%以上;(2)图像数据批量、高通量处理;(3)5~10s/张,高生产率和高可重复性,节省人力投入

[61] 最大稳定外部区域法 葡萄(Vitis vinifera 气孔孔径
[62]

DeepStomata: 基于定向梯度的气孔检测直方图和基于卷积神经网络 白花鸭跖草(Commelina benghalensis
气孔孔径

[63] 基于SSD算法的目标检测模型 大豆(Glycine max 气孔密度
[64]
深度卷积神经网络和修复算法的混合方法 水稻(Oryza sativa
气孔长度、气孔宽度、气孔面积、气孔宽长比
[65]
Gabor滤波算法下的卷积神经网络和灰度共生矩阵 姜黄(Curcuma longa)和姜
Curcuma zanthorrhiza
气孔识别
[66-67]

FPN目标检测和卷积神经网络Mask R-CNN
裸子、蕨类、禾本科植物等12个数据集
气孔识别、6个气孔孔隙(数目、长轴、短轴、面积、离心率、开度)性状
[39] SBOS:目标跟踪和语义分割 小麦(Triticum aestivum 气孔开口面积
[68]
转换学习和支持向量机
藜麦(Chenopodium quinoa
气孔数量、气孔孔径、气孔面积、气孔状态(张开、闭合)
[40]
基于FPN算法的目标检测模型和改进后的CV模型 玉米(Zea mays
4个气孔数量和6个气孔孔隙表型指标
[69] YOLO深度学习模型 玉米(Zea mays 气孔密度
[70]

Leaf Net: 分层策略下的深度卷积网络、区域合并方法、迁移学习 拟南芥(Arabidopsis thaliana

气孔复合体数量、尺寸、形状及表皮细胞数量、尺寸、形状等28项表型指标

Fig.2

Development of exploring leaf stomatal phenotype"

Table 2

The main phenotypic indicators of leaf stomata"

项目Item 指标Index 结构Structure 表型指标Phenotypic indicator 参考文献Reference
直接指标
Direct indicator

气孔复合体


由保卫细胞、副卫细胞、孔隙构成

气孔总数、张开气孔数、闭合气孔数、气孔密度、气孔指数、张开气孔占比、气孔长度、气孔宽度、气孔周长、气孔面积、气孔偏心率、气孔长宽比、气孔圆度、气孔形状指数、气孔导度、空间分布模式、气孔深度 [40-41,55,72]


孔隙
两个保卫细胞之间的小孔
孔隙长度、孔隙宽度、孔隙面积、孔隙周长、孔隙开度、孔隙偏心率、孔隙面积指数 [40,73]
间接指标
Indirect indicator
表皮细胞
植物最外层细胞,与气孔相邻,排列紧密 表皮细胞个数、表皮细胞密度、表皮细胞面积、表皮细胞总面积 [70,73]

Table 3

Functional genes regulating stomatal phenotype in maize leaves"

基因名称Gene name 基因位点Gene loci 基因功能Gene function 气孔表型Stomatal phenotype 参考文献Reference
ZmMUTE GRMZM2G417164 保卫细胞形成与副卫母细胞极化 气孔数目、气孔形状 [90-91]
ZmPAN1 Zm00001d031437 副卫母细胞极化 气孔形状、气孔尺寸 [84]
ZmROP2 Zm00001d053899 副卫母细胞极化 气孔形状、气孔尺寸 [85]
ZmROP9 Zm00001d015036 副卫母细胞极化 气孔形状、气孔尺寸 [85]
ZmPAN2 Zm00001d007862 副卫母细胞极化和副卫细胞形成 气孔形状、气孔尺寸 [86-87]
ZmBRK1 GRMZM5G842058 副卫母细胞极化和表皮细胞形成 气孔形状 [88]
ZmBRK3 GRMZM5G88636 副卫母细胞极化和表皮细胞形成 气孔形状 [88]
ZmNOD GRMZM2G027821 保卫细胞分化 气孔数目、气孔形状 [82]
ZmSHR1 GRMZM2G132794 保卫细胞形成 气孔数目 [83]
ZmMLKS2 Zm00001d052955 副卫细胞分化 气孔尺寸、气孔数目、气孔形状 [89]
ZmSPL10 Zm00001d015451 保卫细胞形成与副卫母细胞极化 气孔形状、气孔尺寸 [92]
ZmSPL14 Zm00001d036692 保卫细胞形成与副卫母细胞极化 气孔形状、气孔尺寸 [92]
ZmSPL26 Zm00001d053756 保卫细胞形成与副卫母细胞极化 气孔形状 [92]
ZmB73 Zm00001d042263 保卫细胞形成与副卫母细胞极化 气孔数目 [93]
[1] USDA (2020) Foreign Agricultural Service. (2022-07-01)[2023-11- 09]. https://www.fas.usda.gov/data/grain-world-markets-and-trade.
[2] Liu H, Wang X, Warburton M L, et al. Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding. Molecular Plant, 2015, 8:871-884.
doi: 10.1016/j.molp.2015.01.016 pmid: 25620769
[3] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
[4] Qu X, Peterson K M, Torii K U. Stomatal development in time: the past and the future. Current Opinion in Genetics and Development, 2017, 45:1-9.
doi: 10.1016/j.gde.2017.02.001
[5] Hepworth C, Caine R S, Harrison E L, et al. Stomatal development: focusing on the grasses. Current Opinion in Plant Biology, 2018, 41:1-7.
doi: S1369-5266(17)30099-7 pmid: 28826033
[6] Richardson F, Brodribb T J, Jordan G J. Amphistomatic leaf surfaces independently regulate gas exchangein response to variations in evaporative demand. Tree Physiology, 2017, 37:869- 878.
doi: 10.1093/treephys/tpx073 pmid: 28898992
[7] Nunes T D G, Zhang D, Raissig M T. Form, development and function of grass stomata. The Plant Journal, 2020, 101:780-799.
doi: 10.1111/tpj.14552 pmid: 31571301
[8] Rudall P J, Hilton J, Bateman R M. Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. The New Phytologist, 2013, 200:598-614.
doi: 10.1111/nph.2013.200.issue-3
[9] Bertolino L T, Caine R S, Gray J E. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 2019, 10:225.
doi: 10.3389/fpls.2019.00225 pmid: 30894867
[10] Zhao C J, Zhang Y, Du J J, et al. Crop phenomics: current status and perspectives. Frontiers in Plant Science, 2019, 10:714.
doi: 10.3389/fpls.2019.00714 pmid: 31214228
[11] 任昱, 魏春光, 郭小宇. 6种荒漠植物叶片气孔性状比较分析. 内蒙古农业大学学报(自然科学版), 2021, 42(2):21-26.
[12] Cao J B, Song Y T, Wu H, et al. Ultrastructural studies on the natural leaf senescence of cinnamomum camphora. Scanning, 2013, 35(5):336-343.
doi: 10.1002/sca.21065 pmid: 23292543
[13] Van Cotthem W. The classification of morphological and ontogenetic types of stomata. Acta Botanica Neerlandica, 1973, 3(22):25.
[14] Franks P J, Farquhar G D. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 2007, 143(1):78-87.
doi: 10.1104/pp.106.089367 pmid: 17114276
[15] Runions A, Tsiantis M, Prusinkiewicz P. A common developmental program can produce diverse leaf shapes. New Phytologist, 2017, 216(2):401-418.
doi: 10.1111/nph.14449 pmid: 28248421
[16] Conklin P A, Strable J, Li S, et al. On the mechanisms of development in monocot and eudicot leaves. New Phytologist, 2019, 221(2):706-724.
doi: 10.1111/nph.15371 pmid: 30106472
[17] 许周伟, 闻丹妮, 欧阳由男, 等. 气孔调节剂对水稻秧苗素质的影响. 中国稻米, 2018, 24(1):24-27.
doi: 10.3969/j.issn.1006-8082.2018.01.006
[18] 于显枫, 张绪成, 方彦杰, 等. 高大气CO2浓度下遮阴对小麦叶片气孔特性及光合特性的影响. 甘肃农业科技, 2017, 3(6):31-36.
[19] Buckley T N. How do stomata respond to water status?. New Phytologist, 2019, 224(1):21-36.
doi: 10.1111/nph.15899 pmid: 31069803
[20] Chen Z H, Chen G, Dai F, et al. Molecular evolution of grass stomata. Trends in Plant Science, 2017, 22(2):124-139.
doi: 10.1016/j.tplants.2016.09.005
[21] Liu Y B, Han L Z, Qin L J. Saccharomyces cerevisiae gene TPS1 improves drought tolerance in Zea mays L. by increasing the expression of SDD1 and reducing stomatal density. Plant Cell Tissue and Organ Culture, 2015, 120(2):779-789.
doi: 10.1007/s11240-014-0647-5
[22] Zhao W S, Sun Y L, Kjelgren R. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015, 37(1):1-9.
doi: 10.1007/s11738-014-1746-y
[23] Xiang Y, Sun X J, Bian X L. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. Journal of Experimental Botany, 2021, 72(4):1399-1410.
doi: 10.1093/jxb/eraa507 pmid: 33130877
[24] Mallmann J, Heckmann D, Bräutigam A, et al. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife, 2014, 3(3):e02478.
doi: 10.7554/eLife.02478
[25] Liu T D, Zhang X W, Xu Y. Influence of red light on the expression of genes on stomatal formation in maize seedlings. Canadian Journal of Plant Science, 2020, 100(3):296-303.
doi: 10.1139/cjps-2019-0140
[26] Han X S, Qin Y, Yu F. A Megabase-scale deletion is associated with phenotypic variation of multiple traits in maize. Genetics, 2019, 211(1):305-316.
doi: 10.1534/genetics.118.301567 pmid: 30389804
[27] Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Frontiers in Plant Science, 2019, 10:1769.
doi: 10.3389/fpls.2019.01769 pmid: 32082340
[28] Carter R, Woolfenden H, Baillie A. Stomatal opening involves polar, not radial, stiffening of guard cells. Current Biology, 2017, 27(19):2974-2983.
doi: S0960-9822(17)31015-1 pmid: 28943087
[29] 吴冰洁. 叶片生长过程中气孔发育状态对光合作用气孔限制和叶温调节的影响. 北京: 北京林业大学, 2015.
[30] Aliche E B, Prusova-Bourke A, Ruiz-Sanchez M, et al. Morphological and physiological responses of the potato stem transport tissues to dehydration stress. Planta, 2020, 251:45.
doi: 10.1007/s00425-019-03336-7 pmid: 31915930
[31] Nikinmaa E, Hölttä T, Hari P, et al. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environment, 2012, 36(3):655-669.
doi: 10.1111/pce.2013.36.issue-3
[32] Tegeder M, Daubresse M C. Source and sink mechanisms of nitrogen transport and use, mechthild tegeder. New Phytologist, 2018, 217(1):35-53.
doi: 10.1111/nph.14876 pmid: 29120059
[33] Gitz D C, Baker J T. Methods for creating stomatal impressions directly onto archivable slides. Agronomy Journal, 2009, 101(1):232-236.
doi: 10.2134/agronj2008.0143N
[34] Eckerson S H. The number and size of the stomata. Botanical Gazette, 1908, 46(3):221-224.
doi: 10.1086/329698
[35] Weyers J D B, Travis A J. Selection and preparation of leaf epidermis for experiments on stomatal physiology. Journal of Experimental Botany, 1981, 32(4):837-850.
doi: 10.1093/jxb/32.4.837
[36] 孙慧群, 周升恩, 吴怀胜, 等. 甲醛胁迫下蚕豆保卫细胞中过氧化氢的积累及其对气孔导度和开度的影响. 农业环境科学学报, 2015, 34(7):1239-1246.
[37] Long F L, Clements F E. The method of collodion films for stomata. American Journal of Botany, 1934, 21(1):7-17.
doi: 10.1002/ajb2.1934.21.issue-1
[38] Song W, Li J, Li K, et al. An automatic method for stomatal pore detection and measurement in microscope images of plant leaf based on a convolutional neural network model. Forests, 2020, 11(9):954.
doi: 10.3390/f11090954
[39] Sun Z Z, Song Y L, Li Q, et al. An integrated method for tracking and monitoring stomata dynamics from microscope videos. Plant Phenomics, 2021(2021):9835961.
[40] Liang X Y, Xu X C, Wang Z W, et al. StomataScorer:a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model. Plant Biotechnology Journal, 2022, 20(3):577-591.
doi: 10.1111/pbi.v20.3
[41] Haus M J, Kelsch R D, Jacobs T W. Application of optical topometry to analysis of the plant epidermis. Plant Physiology, 2015, 169(2):946-959.
doi: 10.1104/pp.15.00613 pmid: 26290539
[42] Haus M J, Li M, Chitwood D H, et al. Long-distance and trans- generational stomata patterning by CO2 across Arabidopsis organs. Frontiers in Plant Science, 2018, 9:1714.
doi: 10.3389/fpls.2018.01714
[43] He Y, Zhou K Y, Wu Z M, et al. Highly efficient nanoscale analysis of plant stomata and cell surface using polyaddition silicone rubber. Frontiers in Plant Science, 2019, 10:1569.
doi: 10.3389/fpls.2019.01569 pmid: 31921235
[44] 王爱民, 沈兰荪. 图像分割研究综述. 测控技术, 2000(5):1-6,16.
[45] 刘奉觉. 介绍一种测定植物气孔状况的方法. 林业科技通讯, 1982(2):6.
[46] Kubinova L. Recent stereological methods for measuring leaf anatomical characteristics-estimation of the number and size of stomata and mesophyll-cells. Journal of Experimental Botany, 1994, 45(1):119-127.
doi: 10.1093/jxb/45.1.119
[47] 罗希平, 田捷, 诸葛婴, 等. 图像分割方法综述. 模式识别与人工智能, 1999, 12(3):300-312.
[48] Zahn C T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 1971, 20(1):68-86.
[49] Urquhart R. Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition, 1982, 15(3):173-187.
doi: 10.1016/0031-3203(82)90069-3
[50] Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1101-1113.
doi: 10.1109/34.244673
[51] 王梅, 李玉鑑, 全笑梅. 图像分割的图论方法综述. 计算机应用与软件, 2014, 31(9):1-12,44.
[52] Cao J B, Song Y T, Wu H, et al. Ultrastructural studies on the natural leaf senescence of cinnamomum camphora. Scanning, 2013, 35(5):336-343.
doi: 10.1002/sca.21065 pmid: 23292543
[53] Lawrence D T, Eran R. Relative humidity is a key factor in the acclimation of the stomatal response to CO2. Journal of Experimental Botany, 2003, 54:2141-2147.
pmid: 12867546
[54] 郑淑霞, 上官周平. 近一世纪黄土高原区植物气孔密度变化规律. 生态学报, 2004, 24(11):2457-2464.
[55] 刘娜, 郭丽丽, 路明, 等. 秸秆还田下灌水及施肥对冬小麦气孔特征的影响. 节水灌溉, 2019(8):14-23.
[56] 杨克彤, 常海龙, 陈国鹏, 等. 兰州市主要绿化植物气孔性状特征. 植物生态学报, 2021, 45(2):187-196.
[57] Sumathi M, Bachpai V K W, Deeparaj B, et al. Quantitative trait loci mapping for stomatal traits in interspecific hybrids of Eucalyptus. Journal of Genetics, 2018, 97(1):323-329.
pmid: 29666352
[58] Fanourakis D, Giday H, Milla R, et al. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Annals of Botany, 2015, 115(4):555-565.
doi: 10.1093/aob/mcu247 pmid: 25538116
[59] 郑云普, 徐明, 王建书, 等. 玉米叶片气孔特征及气体交换过程对气候变暖的响应. 作物学报, 2015, 41(4):601-612.
[60] Vialet-Chabrand S, Brendel O. Automatic measurement of stomatal density from microphotographs. Trees, 2014, 28:1859- 1865.
doi: 10.1007/s00468-014-1063-5
[61] Liu S, Tang J, Petrie P, et al. A fast method to measure stomatal aperture by MSER on smart mobile phone. Applied Industrial Optics:Spectroscopy,Imaging and Metrology, 2016.
[62] Toda Y, Toh S, Bourdais G, et al. DeepStomata: facial recognition technology for automated stomata aperture measurement. bioRxiv, 2018, 9:365098.
[63] Sakoda K, Watanabe T, Sukemura S, et al. Genetic diversity in stomatal density among soybeans elucidated using high- throughput technique based on an algorithm for object detection. Scientific Reports, 2019, 9(1):215-220.
doi: 10.1038/s41598-018-36818-x
[64] Bhugra S, Mishra D, Anupama A, et al. Automatic quantification of stomata for high-throughput plant phenotyping. International Conference on Pattern Recognition, 2018:3904- 3910.
[65] Andayani U, Sumantri I B, Pahala A, et al. The implementation of deep learning using convolutional neural network to classify based on stomata microscopic image of curcuma herbal plants. IOP Conference Series Materials Science and Engineering, 2020, 851:012035.
[66] Jayakody H, Petrie P, Boer H D, et al. A generalised approach for high-throughput instance segmentation of stomata in microscope images. Plant Methods, 2020, 17(1):27.
doi: 10.1186/s13007-021-00727-4
[67] 李君禹. 基于Mask R-CNN的植物叶片气孔分割方法研究. 哈尔滨: 东北林业大学, 2021.
[68] Razzaq A, Shahid S, Akram M, et al. Stomatal state identification and classification in quinoa microscopic imprints through deep learning. Complexity, 2021, 22:1-9.
[69] Zhang F, Ren F T, Li J P, et al. Automatic stomata recognition and measurement based on improved YOLO deep learning model and entropy rate superpixel algorithm. Ecological Informatics, 2022, 68:101521.
doi: 10.1016/j.ecoinf.2021.101521
[70] Li S P, Li L, Fan W, et al. LeafNet:a tool for segmenting and quantifying stomata and pavement cells. The Plant Cell, 2022, 34(4):1171-1188.
doi: 10.1093/plcell/koac021
[71] Yang W, Feng H, Zhang X, et al. Crop phenomics and high-throughput phenotyping:past decades,current challenges,and future perspectives. Molecular Plant, 2020, 13(2):187-214.
doi: 10.1016/j.molp.2020.01.008
[72] Lawson T, Blatt M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164(4):1556-1570.
doi: 10.1104/pp.114.237107 pmid: 24578506
[73] Xie J, Fernandes S B, Mayfield-Jones D, et al. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping. Plant Physiology, 2021, 187(3):1462-1480.
doi: 10.1093/plphys/kiab299 pmid: 34618057
[74] 王秀玲, 赵明, 王启现, 等. 玉米不同基因型气孔特征和叶温差的研究. 华北农学报, 2004, 19(1):71-74.
[75] 王秀玲, 赵明, 王启现, 等. 玉米杂交种及亲本自交系气孔特征. 作物学报, 2004, 30(3):293-296.
[76] 冯宏昭, 吉春容, 李世清, 等. 不同株型夏玉米冠层叶表观自由空间变化规律研究. 西北农业学报, 2008(3):129-134.
[77] 吉春容, 李世清, 冯宏昭, 等. 不同株型夏玉米冠层叶片气孔特性的差异. 西北农林科技大学学报(自然科学版), 2008(5):57-63.
[78] 张浩, 郑云普, 叶嘉, 等. 外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响. 应用生态学报, 2019, 30(3):923-930.
[79] 张晓媛. 大气CO2浓度升高对玉米叶片特征及产量的影响. 杨凌: 西北农林科技大学, 2019.
[80] 闫润杰, 李菲, 张茜茜, 等. 秸秆还田下不同水肥对玉米气孔形态特征及其分布格局的影响. 节水灌溉, 2021(10):71-77.
[81] Xu Y. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129(4):653-673.
doi: 10.1007/s00122-016-2691-5 pmid: 26932121
[82] Rosa M, Abraham-Juárez M J, Lewis M J, et al. The maize mid- complementing activity homolog cell number regulator13/narrow odd dwarf coordinates organ growth and tissue patterning. The Plant Cell, 2017, 29(3),474-490.
doi: 10.1105/tpc.16.00878
[83] Schuler M L, Sedelnikova O V, Walker B J, et al. SHORTROOT- mediated increase in stomatal density has no impact on photosynthetic efficiency. Plant Physiology, 2018, 176(1):757- 772.
doi: 10.1104/pp.17.01005 pmid: 29127261
[84] Cartwright H N, Humphries J A, Smith L G. PAN1: a receptor- like protein that promotes polarization of an asymmetric cell division in maize. Science, 2009, 323(5914),649-651.
doi: 10.1126/science.1161686 pmid: 19179535
[85] Humphries J A, Vejlupkova Z, Luo A, et al. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. The Plant Cell, 2011, 23(6):2273-2284.
doi: 10.1105/tpc.111.085597 pmid: 21653193
[86] Zhang X, Facette M, Humphries J A, et al. Identification of PAN2 by quantitative proteomics as a leucine-rich repeat- receptor-like kinase acting upstream of PAN1 to polarize cell division in maize. The Plant Cell, 2012, 24(11):4577-4589.
doi: 10.1105/tpc.112.104125
[87] Sutimantanapi D, Pater D, Smith L G. Divergent roles for maize PAN1 and PAN2 receptor-like proteins in cytokinesis and cell morphogenesis. Plant Physiology, 2014, 164(4):1905-1917.
doi: 10.1104/pp.113.232660 pmid: 24578508
[88] Facette M R, Park Y, Sutimantanapi D, et al. The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. Nature Plants, 2015, 1:14024.
doi: 10.1038/nplants.2014.24 pmid: 27246760
[89] Gumber H K, McKenna J F, Tolmie A F, et al. MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation. Nucleus, 2019, 10(1):144-166.
doi: 10.1080/19491034.2019.1629795 pmid: 31221013
[90] Liu T, Ohashi-Ito K, Bergmann D C. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development, 2009, 136(13):2265-2276.
doi: 10.1242/dev.032938
[91] Wang H, Guo S, Qiao X, et al. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genetics, 2019, 15(8):e1008377.
doi: 10.1371/journal.pgen.1008377
[92] Kong D, Pan X, Jing Y F, et al. ZmSPL10/14/ 26 are required for epidermal hair cell fate specification on maize leaf. New Phytologist, 2021, 230(4):1533-1549.
doi: 10.1111/nph.v230.4
[93] 郭思义, 乔鑫, 宋纯鹏, 等. Zm00001d042263基因在调控玉米气孔发育中的应用:中国,202111353930.1. 2021-11-11.
[94] Zhao C J, Zhang Y, Du J J, et al. Crop phenomics: Current status and perspectives. Frontiers in Plant Science, 2019, 10:714-729.
doi: 10.3389/fpls.2019.00714 pmid: 31214228
[95] Harrison E L, Arce Cubas L, Gray J E, et al. The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 2020, 101(4):768-779.
doi: 10.1111/tpj.14560 pmid: 31583771
[96] Doheny-Adams T, Hunt L, Franks P J, et al. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1588):547-555.
doi: 10.1098/rstb.2011.0272 pmid: 22232766
[97] Hughes J, Hepworth C, Dutton C, et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiology, 2017, 174(2):776-787.
doi: 10.1104/pp.16.01844 pmid: 28461401
[98] Caine R S, Yin X, Sloan J, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 2019, 221(1):371-384.
doi: 10.1111/nph.15344 pmid: 30043395
[99] Dunn J, Hunt L, Afsharinafar M, et al. Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 2019, 70(18):4737-4747.
doi: 10.1093/jxb/erz248 pmid: 31172183
[100] Tanaka Y, Sugano S S, Shimada T, et al. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, 2013, 198(3):757-764.
doi: 10.1111/nph.12186 pmid: 23432385
[101] Franks P J, Doheny-Adams T W, Britton-Harper Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 2015, 207 (1):188-195.
doi: 10.1111/nph.13347 pmid: 25754246
[1] Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113.
[2] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[3] Liu Chen, Yang Mingfeng, Yang Long, Zhang Nan, Yu Tao. Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco [J]. Crops, 2023, 39(5): 151-156.
[4] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[5] Duan Junya, Zhao Yuanyuan, Peng Zhiliang, Zhang Yongfeng, Duan Weidong, Yang Qingxi, Wang Songling, Chen Xiaolong, Shi Hongzhi. Effects of Once-Over Harvesting Period on the Qualities of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi [J]. Crops, 2023, 39(5): 231-237.
[6] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[7] Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279.
[8] Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48.
[9] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[10] Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90.
[11] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[12] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[13] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[14] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[15] Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!