Crops ›› 2023, Vol. 39 ›› Issue (6): 1-10.doi: 10.16035/j.issn.1001-7283.2023.06.001
Jin Yu1,2,3,4(), Guo Xinyu1,2,3, Zhang Ying1,2,3, Li Dazhuang1,2,3,4, Wang Jinglu1,2,3()
[1] | USDA (2020) Foreign Agricultural Service. (2022-07-01)[2023-11- 09]. https://www.fas.usda.gov/data/grain-world-markets-and-trade. |
[2] |
Liu H, Wang X, Warburton M L, et al. Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding. Molecular Plant, 2015, 8:871-884.
doi: 10.1016/j.molp.2015.01.016 pmid: 25620769 |
[3] |
李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001 |
[4] |
Qu X, Peterson K M, Torii K U. Stomatal development in time: the past and the future. Current Opinion in Genetics and Development, 2017, 45:1-9.
doi: 10.1016/j.gde.2017.02.001 |
[5] |
Hepworth C, Caine R S, Harrison E L, et al. Stomatal development: focusing on the grasses. Current Opinion in Plant Biology, 2018, 41:1-7.
doi: S1369-5266(17)30099-7 pmid: 28826033 |
[6] |
Richardson F, Brodribb T J, Jordan G J. Amphistomatic leaf surfaces independently regulate gas exchangein response to variations in evaporative demand. Tree Physiology, 2017, 37:869- 878.
doi: 10.1093/treephys/tpx073 pmid: 28898992 |
[7] |
Nunes T D G, Zhang D, Raissig M T. Form, development and function of grass stomata. The Plant Journal, 2020, 101:780-799.
doi: 10.1111/tpj.14552 pmid: 31571301 |
[8] |
Rudall P J, Hilton J, Bateman R M. Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. The New Phytologist, 2013, 200:598-614.
doi: 10.1111/nph.2013.200.issue-3 |
[9] |
Bertolino L T, Caine R S, Gray J E. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 2019, 10:225.
doi: 10.3389/fpls.2019.00225 pmid: 30894867 |
[10] |
Zhao C J, Zhang Y, Du J J, et al. Crop phenomics: current status and perspectives. Frontiers in Plant Science, 2019, 10:714.
doi: 10.3389/fpls.2019.00714 pmid: 31214228 |
[11] | 任昱, 魏春光, 郭小宇. 6种荒漠植物叶片气孔性状比较分析. 内蒙古农业大学学报(自然科学版), 2021, 42(2):21-26. |
[12] |
Cao J B, Song Y T, Wu H, et al. Ultrastructural studies on the natural leaf senescence of cinnamomum camphora. Scanning, 2013, 35(5):336-343.
doi: 10.1002/sca.21065 pmid: 23292543 |
[13] | Van Cotthem W. The classification of morphological and ontogenetic types of stomata. Acta Botanica Neerlandica, 1973, 3(22):25. |
[14] |
Franks P J, Farquhar G D. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 2007, 143(1):78-87.
doi: 10.1104/pp.106.089367 pmid: 17114276 |
[15] |
Runions A, Tsiantis M, Prusinkiewicz P. A common developmental program can produce diverse leaf shapes. New Phytologist, 2017, 216(2):401-418.
doi: 10.1111/nph.14449 pmid: 28248421 |
[16] |
Conklin P A, Strable J, Li S, et al. On the mechanisms of development in monocot and eudicot leaves. New Phytologist, 2019, 221(2):706-724.
doi: 10.1111/nph.15371 pmid: 30106472 |
[17] |
许周伟, 闻丹妮, 欧阳由男, 等. 气孔调节剂对水稻秧苗素质的影响. 中国稻米, 2018, 24(1):24-27.
doi: 10.3969/j.issn.1006-8082.2018.01.006 |
[18] | 于显枫, 张绪成, 方彦杰, 等. 高大气CO2浓度下遮阴对小麦叶片气孔特性及光合特性的影响. 甘肃农业科技, 2017, 3(6):31-36. |
[19] |
Buckley T N. How do stomata respond to water status?. New Phytologist, 2019, 224(1):21-36.
doi: 10.1111/nph.15899 pmid: 31069803 |
[20] |
Chen Z H, Chen G, Dai F, et al. Molecular evolution of grass stomata. Trends in Plant Science, 2017, 22(2):124-139.
doi: 10.1016/j.tplants.2016.09.005 |
[21] |
Liu Y B, Han L Z, Qin L J. Saccharomyces cerevisiae gene TPS1 improves drought tolerance in Zea mays L. by increasing the expression of SDD1 and reducing stomatal density. Plant Cell Tissue and Organ Culture, 2015, 120(2):779-789.
doi: 10.1007/s11240-014-0647-5 |
[22] |
Zhao W S, Sun Y L, Kjelgren R. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015, 37(1):1-9.
doi: 10.1007/s11738-014-1746-y |
[23] |
Xiang Y, Sun X J, Bian X L. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. Journal of Experimental Botany, 2021, 72(4):1399-1410.
doi: 10.1093/jxb/eraa507 pmid: 33130877 |
[24] |
Mallmann J, Heckmann D, Bräutigam A, et al. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife, 2014, 3(3):e02478.
doi: 10.7554/eLife.02478 |
[25] |
Liu T D, Zhang X W, Xu Y. Influence of red light on the expression of genes on stomatal formation in maize seedlings. Canadian Journal of Plant Science, 2020, 100(3):296-303.
doi: 10.1139/cjps-2019-0140 |
[26] |
Han X S, Qin Y, Yu F. A Megabase-scale deletion is associated with phenotypic variation of multiple traits in maize. Genetics, 2019, 211(1):305-316.
doi: 10.1534/genetics.118.301567 pmid: 30389804 |
[27] |
Jacob C, Melotto M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Frontiers in Plant Science, 2019, 10:1769.
doi: 10.3389/fpls.2019.01769 pmid: 32082340 |
[28] |
Carter R, Woolfenden H, Baillie A. Stomatal opening involves polar, not radial, stiffening of guard cells. Current Biology, 2017, 27(19):2974-2983.
doi: S0960-9822(17)31015-1 pmid: 28943087 |
[29] | 吴冰洁. 叶片生长过程中气孔发育状态对光合作用气孔限制和叶温调节的影响. 北京: 北京林业大学, 2015. |
[30] |
Aliche E B, Prusova-Bourke A, Ruiz-Sanchez M, et al. Morphological and physiological responses of the potato stem transport tissues to dehydration stress. Planta, 2020, 251:45.
doi: 10.1007/s00425-019-03336-7 pmid: 31915930 |
[31] |
Nikinmaa E, Hölttä T, Hari P, et al. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environment, 2012, 36(3):655-669.
doi: 10.1111/pce.2013.36.issue-3 |
[32] |
Tegeder M, Daubresse M C. Source and sink mechanisms of nitrogen transport and use, mechthild tegeder. New Phytologist, 2018, 217(1):35-53.
doi: 10.1111/nph.14876 pmid: 29120059 |
[33] |
Gitz D C, Baker J T. Methods for creating stomatal impressions directly onto archivable slides. Agronomy Journal, 2009, 101(1):232-236.
doi: 10.2134/agronj2008.0143N |
[34] |
Eckerson S H. The number and size of the stomata. Botanical Gazette, 1908, 46(3):221-224.
doi: 10.1086/329698 |
[35] |
Weyers J D B, Travis A J. Selection and preparation of leaf epidermis for experiments on stomatal physiology. Journal of Experimental Botany, 1981, 32(4):837-850.
doi: 10.1093/jxb/32.4.837 |
[36] | 孙慧群, 周升恩, 吴怀胜, 等. 甲醛胁迫下蚕豆保卫细胞中过氧化氢的积累及其对气孔导度和开度的影响. 农业环境科学学报, 2015, 34(7):1239-1246. |
[37] |
Long F L, Clements F E. The method of collodion films for stomata. American Journal of Botany, 1934, 21(1):7-17.
doi: 10.1002/ajb2.1934.21.issue-1 |
[38] |
Song W, Li J, Li K, et al. An automatic method for stomatal pore detection and measurement in microscope images of plant leaf based on a convolutional neural network model. Forests, 2020, 11(9):954.
doi: 10.3390/f11090954 |
[39] | Sun Z Z, Song Y L, Li Q, et al. An integrated method for tracking and monitoring stomata dynamics from microscope videos. Plant Phenomics, 2021(2021):9835961. |
[40] |
Liang X Y, Xu X C, Wang Z W, et al. StomataScorer:a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model. Plant Biotechnology Journal, 2022, 20(3):577-591.
doi: 10.1111/pbi.v20.3 |
[41] |
Haus M J, Kelsch R D, Jacobs T W. Application of optical topometry to analysis of the plant epidermis. Plant Physiology, 2015, 169(2):946-959.
doi: 10.1104/pp.15.00613 pmid: 26290539 |
[42] |
Haus M J, Li M, Chitwood D H, et al. Long-distance and trans- generational stomata patterning by CO2 across Arabidopsis organs. Frontiers in Plant Science, 2018, 9:1714.
doi: 10.3389/fpls.2018.01714 |
[43] |
He Y, Zhou K Y, Wu Z M, et al. Highly efficient nanoscale analysis of plant stomata and cell surface using polyaddition silicone rubber. Frontiers in Plant Science, 2019, 10:1569.
doi: 10.3389/fpls.2019.01569 pmid: 31921235 |
[44] | 王爱民, 沈兰荪. 图像分割研究综述. 测控技术, 2000(5):1-6,16. |
[45] | 刘奉觉. 介绍一种测定植物气孔状况的方法. 林业科技通讯, 1982(2):6. |
[46] |
Kubinova L. Recent stereological methods for measuring leaf anatomical characteristics-estimation of the number and size of stomata and mesophyll-cells. Journal of Experimental Botany, 1994, 45(1):119-127.
doi: 10.1093/jxb/45.1.119 |
[47] | 罗希平, 田捷, 诸葛婴, 等. 图像分割方法综述. 模式识别与人工智能, 1999, 12(3):300-312. |
[48] | Zahn C T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 1971, 20(1):68-86. |
[49] |
Urquhart R. Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition, 1982, 15(3):173-187.
doi: 10.1016/0031-3203(82)90069-3 |
[50] |
Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1101-1113.
doi: 10.1109/34.244673 |
[51] | 王梅, 李玉鑑, 全笑梅. 图像分割的图论方法综述. 计算机应用与软件, 2014, 31(9):1-12,44. |
[52] |
Cao J B, Song Y T, Wu H, et al. Ultrastructural studies on the natural leaf senescence of cinnamomum camphora. Scanning, 2013, 35(5):336-343.
doi: 10.1002/sca.21065 pmid: 23292543 |
[53] |
Lawrence D T, Eran R. Relative humidity is a key factor in the acclimation of the stomatal response to CO2. Journal of Experimental Botany, 2003, 54:2141-2147.
pmid: 12867546 |
[54] | 郑淑霞, 上官周平. 近一世纪黄土高原区植物气孔密度变化规律. 生态学报, 2004, 24(11):2457-2464. |
[55] | 刘娜, 郭丽丽, 路明, 等. 秸秆还田下灌水及施肥对冬小麦气孔特征的影响. 节水灌溉, 2019(8):14-23. |
[56] | 杨克彤, 常海龙, 陈国鹏, 等. 兰州市主要绿化植物气孔性状特征. 植物生态学报, 2021, 45(2):187-196. |
[57] |
Sumathi M, Bachpai V K W, Deeparaj B, et al. Quantitative trait loci mapping for stomatal traits in interspecific hybrids of Eucalyptus. Journal of Genetics, 2018, 97(1):323-329.
pmid: 29666352 |
[58] |
Fanourakis D, Giday H, Milla R, et al. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Annals of Botany, 2015, 115(4):555-565.
doi: 10.1093/aob/mcu247 pmid: 25538116 |
[59] | 郑云普, 徐明, 王建书, 等. 玉米叶片气孔特征及气体交换过程对气候变暖的响应. 作物学报, 2015, 41(4):601-612. |
[60] |
Vialet-Chabrand S, Brendel O. Automatic measurement of stomatal density from microphotographs. Trees, 2014, 28:1859- 1865.
doi: 10.1007/s00468-014-1063-5 |
[61] | Liu S, Tang J, Petrie P, et al. A fast method to measure stomatal aperture by MSER on smart mobile phone. Applied Industrial Optics:Spectroscopy,Imaging and Metrology, 2016. |
[62] | Toda Y, Toh S, Bourdais G, et al. DeepStomata: facial recognition technology for automated stomata aperture measurement. bioRxiv, 2018, 9:365098. |
[63] |
Sakoda K, Watanabe T, Sukemura S, et al. Genetic diversity in stomatal density among soybeans elucidated using high- throughput technique based on an algorithm for object detection. Scientific Reports, 2019, 9(1):215-220.
doi: 10.1038/s41598-018-36818-x |
[64] | Bhugra S, Mishra D, Anupama A, et al. Automatic quantification of stomata for high-throughput plant phenotyping. International Conference on Pattern Recognition, 2018:3904- 3910. |
[65] | Andayani U, Sumantri I B, Pahala A, et al. The implementation of deep learning using convolutional neural network to classify based on stomata microscopic image of curcuma herbal plants. IOP Conference Series Materials Science and Engineering, 2020, 851:012035. |
[66] |
Jayakody H, Petrie P, Boer H D, et al. A generalised approach for high-throughput instance segmentation of stomata in microscope images. Plant Methods, 2020, 17(1):27.
doi: 10.1186/s13007-021-00727-4 |
[67] | 李君禹. 基于Mask R-CNN的植物叶片气孔分割方法研究. 哈尔滨: 东北林业大学, 2021. |
[68] | Razzaq A, Shahid S, Akram M, et al. Stomatal state identification and classification in quinoa microscopic imprints through deep learning. Complexity, 2021, 22:1-9. |
[69] |
Zhang F, Ren F T, Li J P, et al. Automatic stomata recognition and measurement based on improved YOLO deep learning model and entropy rate superpixel algorithm. Ecological Informatics, 2022, 68:101521.
doi: 10.1016/j.ecoinf.2021.101521 |
[70] |
Li S P, Li L, Fan W, et al. LeafNet:a tool for segmenting and quantifying stomata and pavement cells. The Plant Cell, 2022, 34(4):1171-1188.
doi: 10.1093/plcell/koac021 |
[71] |
Yang W, Feng H, Zhang X, et al. Crop phenomics and high-throughput phenotyping:past decades,current challenges,and future perspectives. Molecular Plant, 2020, 13(2):187-214.
doi: 10.1016/j.molp.2020.01.008 |
[72] |
Lawson T, Blatt M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164(4):1556-1570.
doi: 10.1104/pp.114.237107 pmid: 24578506 |
[73] |
Xie J, Fernandes S B, Mayfield-Jones D, et al. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping. Plant Physiology, 2021, 187(3):1462-1480.
doi: 10.1093/plphys/kiab299 pmid: 34618057 |
[74] | 王秀玲, 赵明, 王启现, 等. 玉米不同基因型气孔特征和叶温差的研究. 华北农学报, 2004, 19(1):71-74. |
[75] | 王秀玲, 赵明, 王启现, 等. 玉米杂交种及亲本自交系气孔特征. 作物学报, 2004, 30(3):293-296. |
[76] | 冯宏昭, 吉春容, 李世清, 等. 不同株型夏玉米冠层叶表观自由空间变化规律研究. 西北农业学报, 2008(3):129-134. |
[77] | 吉春容, 李世清, 冯宏昭, 等. 不同株型夏玉米冠层叶片气孔特性的差异. 西北农林科技大学学报(自然科学版), 2008(5):57-63. |
[78] | 张浩, 郑云普, 叶嘉, 等. 外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响. 应用生态学报, 2019, 30(3):923-930. |
[79] | 张晓媛. 大气CO2浓度升高对玉米叶片特征及产量的影响. 杨凌: 西北农林科技大学, 2019. |
[80] | 闫润杰, 李菲, 张茜茜, 等. 秸秆还田下不同水肥对玉米气孔形态特征及其分布格局的影响. 节水灌溉, 2021(10):71-77. |
[81] |
Xu Y. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129(4):653-673.
doi: 10.1007/s00122-016-2691-5 pmid: 26932121 |
[82] |
Rosa M, Abraham-Juárez M J, Lewis M J, et al. The maize mid- complementing activity homolog cell number regulator13/narrow odd dwarf coordinates organ growth and tissue patterning. The Plant Cell, 2017, 29(3),474-490.
doi: 10.1105/tpc.16.00878 |
[83] |
Schuler M L, Sedelnikova O V, Walker B J, et al. SHORTROOT- mediated increase in stomatal density has no impact on photosynthetic efficiency. Plant Physiology, 2018, 176(1):757- 772.
doi: 10.1104/pp.17.01005 pmid: 29127261 |
[84] |
Cartwright H N, Humphries J A, Smith L G. PAN1: a receptor- like protein that promotes polarization of an asymmetric cell division in maize. Science, 2009, 323(5914),649-651.
doi: 10.1126/science.1161686 pmid: 19179535 |
[85] |
Humphries J A, Vejlupkova Z, Luo A, et al. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. The Plant Cell, 2011, 23(6):2273-2284.
doi: 10.1105/tpc.111.085597 pmid: 21653193 |
[86] |
Zhang X, Facette M, Humphries J A, et al. Identification of PAN2 by quantitative proteomics as a leucine-rich repeat- receptor-like kinase acting upstream of PAN1 to polarize cell division in maize. The Plant Cell, 2012, 24(11):4577-4589.
doi: 10.1105/tpc.112.104125 |
[87] |
Sutimantanapi D, Pater D, Smith L G. Divergent roles for maize PAN1 and PAN2 receptor-like proteins in cytokinesis and cell morphogenesis. Plant Physiology, 2014, 164(4):1905-1917.
doi: 10.1104/pp.113.232660 pmid: 24578508 |
[88] |
Facette M R, Park Y, Sutimantanapi D, et al. The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. Nature Plants, 2015, 1:14024.
doi: 10.1038/nplants.2014.24 pmid: 27246760 |
[89] |
Gumber H K, McKenna J F, Tolmie A F, et al. MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation. Nucleus, 2019, 10(1):144-166.
doi: 10.1080/19491034.2019.1629795 pmid: 31221013 |
[90] |
Liu T, Ohashi-Ito K, Bergmann D C. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development, 2009, 136(13):2265-2276.
doi: 10.1242/dev.032938 |
[91] |
Wang H, Guo S, Qiao X, et al. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genetics, 2019, 15(8):e1008377.
doi: 10.1371/journal.pgen.1008377 |
[92] |
Kong D, Pan X, Jing Y F, et al. ZmSPL10/14/ 26 are required for epidermal hair cell fate specification on maize leaf. New Phytologist, 2021, 230(4):1533-1549.
doi: 10.1111/nph.v230.4 |
[93] | 郭思义, 乔鑫, 宋纯鹏, 等. Zm00001d042263基因在调控玉米气孔发育中的应用:中国,202111353930.1. 2021-11-11. |
[94] |
Zhao C J, Zhang Y, Du J J, et al. Crop phenomics: Current status and perspectives. Frontiers in Plant Science, 2019, 10:714-729.
doi: 10.3389/fpls.2019.00714 pmid: 31214228 |
[95] |
Harrison E L, Arce Cubas L, Gray J E, et al. The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 2020, 101(4):768-779.
doi: 10.1111/tpj.14560 pmid: 31583771 |
[96] |
Doheny-Adams T, Hunt L, Franks P J, et al. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1588):547-555.
doi: 10.1098/rstb.2011.0272 pmid: 22232766 |
[97] |
Hughes J, Hepworth C, Dutton C, et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiology, 2017, 174(2):776-787.
doi: 10.1104/pp.16.01844 pmid: 28461401 |
[98] |
Caine R S, Yin X, Sloan J, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 2019, 221(1):371-384.
doi: 10.1111/nph.15344 pmid: 30043395 |
[99] |
Dunn J, Hunt L, Afsharinafar M, et al. Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 2019, 70(18):4737-4747.
doi: 10.1093/jxb/erz248 pmid: 31172183 |
[100] |
Tanaka Y, Sugano S S, Shimada T, et al. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, 2013, 198(3):757-764.
doi: 10.1111/nph.12186 pmid: 23432385 |
[101] |
Franks P J, Doheny-Adams T W, Britton-Harper Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 2015, 207 (1):188-195.
doi: 10.1111/nph.13347 pmid: 25754246 |
[1] | Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113. |
[2] | Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194. |
[3] | Liu Chen, Yang Mingfeng, Yang Long, Zhang Nan, Yu Tao. Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco [J]. Crops, 2023, 39(5): 151-156. |
[4] | Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196. |
[5] | Duan Junya, Zhao Yuanyuan, Peng Zhiliang, Zhang Yongfeng, Duan Weidong, Yang Qingxi, Wang Songling, Chen Xiaolong, Shi Hongzhi. Effects of Once-Over Harvesting Period on the Qualities of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi [J]. Crops, 2023, 39(5): 231-237. |
[6] | Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254. |
[7] | Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279. |
[8] | Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48. |
[9] | Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70. |
[10] | Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90. |
[11] | Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109. |
[12] | Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117. |
[13] | Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173. |
[14] | Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181. |
[15] | Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37. |
|