Crops ›› 2023, Vol. 39 ›› Issue (6): 190-194.doi: 10.16035/j.issn.1001-7283.2023.06.026

Previous Articles     Next Articles

Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer

Liang Zhongyu1,2(), Xue Jun2, Zhang Guoqiang2, Ming Bo2, Shen Dongping2, Fang Liang2, Zhou Linli2, Zhang Yuqin1(), Yang Hengshan1, Wang Keru2, Li Shaokun2()   

  1. 1College of Agriculture, Inner Mongolia Minzu University, Tongliao 028043, Inner Mongolia, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2023-03-19 Revised:2023-10-24 Online:2023-12-15 Published:2023-12-15

Abstract:

Under the condition of integrated water and fertilizer of drip irrigation, the differences of stalk breakage, plant morphology and internode mechanical strength of maize stalks were investigated among different phosphorus application rates, and the effects of phosphorus application rate on lodging resistance of maize was clarified. The results showed that the breaking resistance of the stems was first increased and then decreased with the increase of phosphorus application at the silking stage, which was the maximum at P120 treatment (120kg/ha) within two years; during the maturation period, the breaking resistance of stems gradually increased with the increase of phosphorus application. The ear height, internode diameter at the base of the stem, the third internode puncture strength (RPS) and dry weight per unit length (DWUL) of P120 treatment were all higher than those of other treatments. The correlation analysis showed that the stem breaking resistance was significantly positively correlated with RPS and DWUL of the third section, and negatively correlated with the ear position coefficient. In summary, under the condition of integrated water and fertilizer of drip irrigation with dense planting, the fractional application of phosphorus mainly affected the mechanical strength of stems by changing the amount of dry matter accumulation between internodes at the base, and also changed the ear position coefficient of plants, which comprehensively affected its lodging resistance from the aspects of mechanical strength and morphology of stems.

Key words: Maize, Water and fertilizer integration, Phosphate fertilizer, Lodging resistance, Yield

Table 1

Basic nutrient status of soil in 0-40cm soil layer at the test site"

土层
Soil layer
(cm)
有机质
Organic matter
(g/kg)
碱解氮
Available N
(mg/kg)
速效磷
Available P
(mg/kg)
速效钾
Available K
(mg/kg)
0~20 24.07 91.9 11 196.5
20~40 23.68 83.1 3 197.3

Fig.1

Effect of phosphorus application amount on breaking force of maize stalk Different lowercase letters indicate significant differences at the 0.05 level among different phosphorus application treatments of same year, the same below"

Table 2

Effects of phosphorus application amount on plant morphology of maize"

年份
Year
处理
Treatment
株高
Plant height (cm)
穗位高
Ear height (cm)
重心高
Height of gravity center (cm)
穗位系数
Ear position coefficient
2019 P60 276.8±5.1b 106.3±2.2a 92.5±3.0a 0.38±0.01a
P90 265.0±8.5c 93.8±4.6b 88.3±5.4a 0.35±0.02b
P120 287.8±2.1a 98.8±6.6ab 89.0±6.2a 0.34±0.02b
P150 271.5±7.0bc 105.8±5.9a 91.0±4.3a 0.39±0.02a
2021 P60 282.8±6.3c 112.4±5.6b 104.4±6.2b 0.40±0.02a
P90 293.2±7.5b 110.8±2.7b 106.2±1.3b 0.38±0.01a
P120 303.8±5.5a 117.8±1.3a 113.4±5.5a 0.39±0.01a
P150 284.0±5.6c 109.6±4.4b 106.6±5.9ab 0.39±0.01a

Table 3

Effects of phosphorus application rate on basal internodal morphology of maize stalk"

年份
Year
处理
Treatment
节间长度
Internode
length (cm)
节间直径
Internode
diameter (mm)
节间长度/直径
Internode
length/diameter
2019 P60 45.2±1.2bc 20.4±0.9a 2.2±0.1ab
P90 43.4±1.7c 20.5±1.0a 2.1±0.2b
P120 49.5±1.5a 20.4±1.2a 2.4±0.1a
P150 46.1±1.2b 19.2±0.8a 2.4±0.1a
2021 P60 52.5±1.3a 19.1±0.5b 2.8±0.1a
P90 52.0±1.9b 20.9±0.6ab 2.5±0.2c
P120 54.5±1.8a 20.9±0.6a 2.6±0.1bc
P150 57.8±1.7a 20.1±0.8a 2.7±0.1ab

Fig.2

Effects of phosphorus application amount on puncture strength of the third internode"

Fig.3

Effects of phosphorus application amount on DWUL of third internode length"

Table 4

Correlation analysis of maize stem breaking resistance with plant morphology, stem mechanical strength and dry matter accumulation"

指标Index 茎秆抗折断力
穗位高Ear height -0.313
穗位系数Ear position coefficient -0.652**
第3节间RPS RPS of the third section 0.675**
第3节间DWUL DWUL of the third section 0.626**
基部节间长度Basal internode length 0.419
基部节间直径Basal internode diameter 0.338

Fig.4

Effect of phosphorus application amount on maize yield"

[1] 曹庆军, 曹铁华, 杨粉团, 等. 灌浆期风灾倒伏对玉米籽粒灌浆特性及品质的影响. 中国生态农业学报, 2013, 21(9):1107-1113.
[2] 杨德光, 马德志, 于乔乔, 等. 玉米倒伏的影响因素及抗倒伏性研究进展. 中国农业大学学报, 2020, 25(7):28-38.
[3] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展. 作物学报, 2022, 48(1):15-26.
doi: 10.3724/SP.J.1006.2022.03055
[4] 丰光, 黄长玲, 邢锦丰. 玉米抗倒伏的研究进展. 作物杂志, 2008(4):12-14.
[5] 井淑香, 郑以宏, 袁永胜, 等. 不同生育时期倒伏对夏玉米生育性状和产量的影响. 山东农业科学, 2018, 50(2):61-63,67.
[6] 薛军, 董朋飞, 胡树平, 等. 玉米倒伏对机械粒收损失的影响及倒伏减损收获技术. 玉米科学, 2020, 28(6):116-120,126.
[7] 薛军, 李璐璐, 谢瑞芝, 等. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44(12):1774-1781.
doi: 10.3724/SP.J.1006.2018.01774
[8] 马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012(2):10-15.
[9] Masood T, Gul R, Munsif F, et al. Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal of Agriculture (Pakistan), 2011, 27(2):167-170.
[10] 彭正萍, 张家铜, 袁硕, 等. 不同供磷水平对玉米干物质和磷动态积累及分配的影响. 植物营养与肥料学报, 2009, 15(4):793-798.
[11] Fageria N K, Baligar V C. Phosphorus-use efficiency by corn genotypes. Journal of Plant Nutrition, 1997, 20(10):1267-1277.
doi: 10.1080/01904169709365334
[12] 张萌, 曹国军, 耿玉辉, 等. 不同施磷方式对吉林省西部超高产玉米磷素吸收积累的影响. 玉米科学, 2015, 23(6):102-107.
[13] 范秀艳, 杨恒山, 高聚林, 等. 施磷方式对高产春玉米磷素吸收与磷肥利用的影响. 植物营养与肥料学报, 2013, 19(2):312-320.
[14] 张经廷, 陈青云, 吕丽华, 等. 夏玉米产量及茎秆抗倒伏性状对不同肥料滴灌配施的响应. 华北农学报, 2015, 30(6):209-215.
[15] 张国桥, 王静, 刘涛, 等. 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响. 植物营养与肥料学报, 2014, 20(5):1103-1109.
[16] 陈婷, 胡瑶, 吴凡, 等. 氮磷调控对杂交水稻旌优781抗倒伏性及产量的影响. 云南大学学报(自然科学版), 2020, 42(6):1190-1201.
[17] 王囡囡. 氮密互作条件下玉米抗倒性农艺性状的研究. 中国种业, 2021(6):62-64.
[18] 杨德光, 马德志, 于乔乔, 等. 玉米倒伏的影响因素及抗倒伏性研究进展. 中国农业大学学报, 2020, 25(7):28-38.
[19] 任佰朝, 李利利, 董树亭, 等. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42(12):1864-1872.
doi: 10.3724/SP.J.1006.2016.01864
[20] 徐田军, 吕天放, 陈传永, 等. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019, 52(4):629-638.
doi: 10.3864/j.issn.0578-1752.2019.04.005
[21] 勾玲, 黄建军, 张宾, 等. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33(10):1688-1695.
[22] 王亮, 丰光, 李妍妍, 等. 玉米倒伏与植株农艺性状和病虫害发生关系的研究. 作物杂志, 2016(2):83-88.
[23] 杨青华, 冉午玲, 李蕾蕾, 等. 玉米茎秆性状与倒伏的相关性及其通径分析. 河南农业大学学报, 2016, 50(2):167-170.
[24] 张皓禹, 孟超然, 张凤麟, 等. 新疆北疆地区磷肥不同基追比例对滴灌玉米养分吸收和产量的影响. 玉米科学, 2021, 29(1):138-145.
[25] 李青军, 张炎, 胡伟, 等. 滴灌磷钾肥基追比对滴灌玉米干物质积累、产量及养分吸收的影响. 中国土壤与肥料, 2016, 266(6):74-80.
[26] 耿玉辉, 曹国军, 叶青, 等. 磷肥不同施用方式对土壤速效磷及春玉米磷素吸收和产量的影响. 华南农业大学学报, 2013, 34(4):470-474.
[27] 王艳丽, 张富仓, 李菊, 等. 灌溉和施磷对河西地区春玉米生长、产量和磷素利用的影响. 西北农业学报, 2021, 30(9):1309-1320.
[28] 李前, 侯云鹏, 尹彩侠, 等. 吉林省半干旱区膜下滴灌施磷管理对玉米生长与产量及土壤磷素平衡的影响. 中国农学通报, 2019, 35(34):1-8.
doi: 10.11924/j.issn.1000-6850.casb19010083
[29] 李格, 白由路, 杨俐苹, 等. 华北地区夏玉米滴灌施肥的肥料效应. 中国农业科学, 2019, 52(11):1930-1941.
doi: 10.3864/j.issn.0578-1752.2019.11.008
[30] 向达兵, 郭凯, 雷婷, 等. 磷钾营养对套作大豆茎秆形态和抗倒性的影响. 中国油料作物学报, 2010, 32(3):395-402.
[31] 沈东萍, 张国强, 王克如, 等. 水肥一体化施磷对滴灌高产春玉米产量及肥料利用率的影响. 玉米科学, 2022, 30(1):152-157.
[32] 冯国瑞, 刘小龙, 王祥斌, 等. 启动磷肥不同施用方式对玉米养分吸收及生长和产量的影响. 核农学报, 2022, 36(5):1052- 1060.
doi: 10.11869/j.issn.100-8551.2022.05.1052
[33] 张经廷, 吕丽华, 张丽华, 等. 夏玉米茎秆质量及养分吸收对不同肥料滴灌配施的响应: 第十五届全国玉米栽培学术研讨会会议论文集. 2017:156-157.
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[3] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[4] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[5] Feng Yong, Hou Xuguang, Xue Chunlei, Zhang Laihou, Song Guodong, Su Minli, Fu Xiaohua, Sun Yuyan. Division of Suitable Ecological Regions of Maize Varieties in Inner Mongolia [J]. Crops, 2024, 40(1): 23-30.
[6] Wang Haitao, Ren Chunmei, Dong Yan, Li Shuo, Cheng Zhaobang, Ji Yinghua. Molecular Detection and Identification of Maize Yellow Mosaic Virus on Sorghum in Huai’an, Jiangsu [J]. Crops, 2024, 40(1): 233-238.
[7] Ma Juan, Huang Lu, Yu Ting, Guo Guojun, Zhu Weihong, Liu Jingbao. Multi-Locus Genome-Wide Association Study and Genomic Prediction for General Combining Ability of Maize Ear Diameter [J]. Crops, 2024, 40(1): 31-39.
[8] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[9] Wu Ying, Hu Die, Li Ting, Duan Qianyuan, Wei Ningning, Zhang Xinghua, Xu Shutu, Xue Jiquan. Analysis of WRKY Transcription Factor IIc Subfamily in Maize and Its Expression Profile under Drought [J]. Crops, 2024, 40(1): 80-89.
[10] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[11] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[12] Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10.
[13] Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113.
[14] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[15] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!