Crops ›› 2023, Vol. 39 ›› Issue (6): 79-85.doi: 10.16035/j.issn.1001-7283.2023.06.011

Previous Articles     Next Articles

Genetic Diversity Analysis of Quinoa Germplasm Resources Based on SRAP

Yang Enze1(), Wang Shuyan1(), Liu Ruixiang2, Shi Fengyuan1, Zhang Jinhao1, Li Jiana1, Li Zhiwei1, Guo Zhanbin3   

  1. 1Agricultural College of Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2School of Desert Control, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    3Inner Mongolia Yiji Biotechnology Co., Ltd., Hohhot 010010, Inner Mongolia, China
  • Received:2022-06-16 Revised:2022-07-22 Online:2023-12-15 Published:2023-12-15

Abstract:

SRAP molecular markers were used to analyze the genetic diversity of 60 quinoa germplasms. The results showed that 60 specific bands were amplified by 11 pairs of SRAP primers, and the average polymorphic information content (PIC) of primers was 0.3199, the average number of alleles (Na) was 1.9375, the average number of effective alleles (Ne) was 1.5384, the mean value of Nei's gene diversity index (H′) was 0.3135, the average Shannon information index (I) was 0.4711. The average genetic similarity coefficient of 60 quinoa germplasm materials was 0.6748, and 60 quinoa test materials could be divided into four categories and nine sub-types when the genetic similarity coefficients were 0.69 and 0.72, respectively.

Key words: Quinoa, Germplasm resources, SRAP molecular marker, Genetic diversity

Table 1

Quinoa material for test"

编号
Number
材料名称
Material
name
主穗紧凑程度
Compactness
of main ear
花序类型
Inflorescence
type
株型
Plant
type
产量类型
Yield
type
编号
Number
材料名称
Material
name
主穗紧凑程度
Compactness
of main ear
花序类型
Inflorescence
type
株型
Plant
type
产量类型
Yield
type
1 21-Y-633 中间型 圆锥 帚型,矮秆 高产 31 21-Y-766 中间型 圆锥 扇型,矮秆 高产
2 21-Y-642 松散型 圆锥 扇型,矮秆 低产 32 21-Y-770 中间型 圆锥 帚型,矮秆 高产
3 21-Y-644 松散型 总状 帚型,矮秆 低产 33 21-Y-772 松散型 圆锥 筒型,矮秆 低产
4 21-Y-662 中间型 圆锥 扇型,矮秆 低产 34 21-Y-776 中间型 圆锥 帚型,矮秆 低产
5 21-Y-663 中间型 圆锥 扇型,矮秆 高产 35 21-Y-782 中间型 圆锥 帚型,矮秆 低产
6 21-Y-666 中间型 圆锥 帚型,矮秆 低产 36 21-Y-788 中间型 圆锥 帚型,高秆 高产
7 21-Y-667 中间型 圆锥 帚型,矮秆 高产 37 21-Y-798 中间型 圆锥 帚型,高秆 高产
8 21-Y-668 中间型 圆锥 帚型,矮秆 低产 38 21-Y-801 中间型 圆锥 帚型,高秆 高产
9 21-Y-669 中间型 圆锥 帚型,矮秆 高产 39 21-Y-802 中间型 圆锥 扇型,矮秆 高产
10 21-Y-671 中间型 圆锥 帚型,矮秆 高产 40 21-Y-803 中间型 圆锥 帚型,矮秆 低产
11 21-Y-673 紧凑型 圆锥 扇型,高秆 高产 41 21-Y-805 中间型 圆锥 帚型,矮秆 低产
12 21-Y-676 松散型 总状 扇型,矮秆 低产 42 21-Y-806 中间型 圆锥 扇型,矮秆 高产
13 21-Y-678 中间型 总状 帚型,矮秆 高产 43 21-Y-808 中间型 圆锥 扇型,矮秆 高产
14 21-Y-679 松散型 圆锥 扇型,矮秆 高产 44 21-Y-814 松散型 圆锥 帚型,高秆 低产
15 21-Y-696 松散型 圆锥 帚型,高秆 高产 45 21-Y-832 松散型 圆锥 帚型,高秆 低产
16 21-Y-700 中间型 总状 帚型,矮秆 低产 46 21-Y-835 松散型 圆锥 帚型,矮秆 高产
17 21-Y-706 中间型 圆锥 帚型,高秆 高产 47 21-Y-837 中间型 圆锥 帚型,矮秆 高产
18 21-Y-708 中间型 圆锥 帚型,矮秆 高产 48 21-Y-844 中间型 圆锥 帚型,矮秆 高产
19 21-Y-714 中间型 圆锥 帚型,矮秆 低产 49 21-Y-858 中间型 圆锥 帚型,矮秆 低产
20 21-Y-716 紧凑型 圆锥 帚型,矮秆 高产 50 21-Y-862 中间型 圆锥 帚型,矮秆 低产
21 21-Y-717 中间型 圆锥 扇型,矮秆 低产 51 21-Y-882 松散型 总状 帚型,高秆 高产
22 21-Y-718 中间型 圆锥 帚型,矮秆 低产 52 21-Y-897 中间型 圆锥 帚型,矮秆 高产
23 21-Y-720 中间型 圆锥 帚型,矮秆 高产 53 21-Y-898 松散型 总状 帚型,高秆 高产
24 21-Y-723 中间型 圆锥 帚型,矮秆 低产 54 21-Y-909 紧凑型 圆锥 帚型,矮秆 高产
25 21-Y-725 中间型 圆锥 帚型,高秆 高产 55 21-Y-924 松散型 圆锥 帚型,矮秆 低产
26 21-Y-732 松散型 圆锥 帚型,矮秆 高产 56 21-Y-925 中间型 圆锥 帚型,矮秆 低产
27 21-Y-737 中间型 圆锥 帚型,矮秆 低产 57 21-Y-926 中间型 圆锥 帚型,矮秆 高产
28 21-Y-743 中间型 圆锥 帚型,高秆 高产 58 21-Y-937 紧凑型 圆锥 帚型,高秆 高产
29 21-Y-761 中间型 圆锥 帚型,矮秆 高产 59 21-Y-954 中间型 圆锥 扇型,矮秆 高产
30 21-Y-765 中间型 圆锥 帚型,高秆 高产 60 21-Y-961 紧凑型 圆锥 扇型,高秆 高产

Table 2

Standards for recording agronomic traits of quinoa"

性状Trait 记录标准Record standard
株高
Plant height (cm)
成熟期地面至植株顶端的距离
产量Yield (kg) 成熟期籽粒的风干质量
穗色
Ear color
黄绿=1、玫红=2、黄=3、粉红=4、橘黄=5、绿= 6、红绿=7、紫=8、玫红绿=9、玫红黄=10、白=11
秆色
Stem color
绿=1、黄绿=2、玫红=3、玫红绿=4、玫红黄=5、黄=6、粉红=7、粉红绿=8、红=9、红绿=10、浅黄=11、红黄绿=12、紫红绿=13
主穗紧凑程度
Compactness
of main ear
中间型=1、松散型=2、紧凑型=3

株型
Plant type
帚型、扇型、筒型
花序类型
Inflorescence type
圆锥花序、总状花序、伞状花序

Fig.1

Electrophoresis results of DNA quality of quinoa resources 1-12 are the random presentation of the test materials"

Table 3

Sequences of SRAP primers"

正向引物Forward primer 序列Sequence (5′-3′) 反向引物Reverse primer 序列Sequence (5′-3′)
A1 TGAGTCCAAACCGGATA B1 GACTGCGTACGAATTAAT
A2 TGAGTCCAAACCGGAGC B2 GACTGCGTACGAATTTGC
A3 TGAGTCCAAACCGGAAT B3 GACTGCGTACGAATTGAC
A4 TGAGTCCAAACCGGAAC B4 GACTGCGTACGAATTTGA
A5 TGAGTCCAAACCGGAAG B5 GACTGCGTACGAATTAAC
A6 TGAGTCCAAACCGGATG B6 GACTGCGTACGAATTGCA
A7 TGAGTCCAAACCGGACT B7 GACTGCGTACGAATTGTA
A8 TGAGTCCAAACCGGTGA B8 GACTGCGTACGAATTACT
A9 TGAGTCCAAACCGGACC B9 GACTGCGTACGAATTGAT
A10 TGAGTCCAAACCGGACT B10 GACTGCGTACGAATTCAA
A11 TGAGTCCAAACCGGACA B11 GACTGCGTACGAATTCAC
A12 TGAGTCCAAACCGGACG B12 GACTGCGTACGAATTCTG
A13 TGAGTCCAAACCGGAGG B13 GACTGCGTACGAATTGTC
A14 TGAGTCCAAACCGGAAA B14 GACTGCGTACGAATTCGA
A15 TGAGTCCAAACCGGAGA B15 GACTGCGTACGAATTAGC
A16 TGAGTCCAAACCGGCAT
A17 TGAGTCCAAACCGGTCC
A18 TGAGTCCAAACCGGTGC

Table 4

Amplification results of SRAP primer combination"

序号
Code
引物组合
Primer
combination
总位点数
Number of
total loci
多态性位点数
Number of
polymorphic loci
多态性位点百分率
Percentage of
polymorphic loci (%)
1 A4B9 7 7 100.0
2 A4B15 6 6 100.0
3 A5B4 4 4 100.0
4 A6B3 3 3 100.0
5 A9B10 9 8 88.9
6 A9B13 5 4 80.0
7 A11B8 4 3 75.0
8 A11B15 8 8 100.0
9 A14B10 6 5 83.3
10 A14B13 7 7 100.0
11 A17B2 5 5 100.0
总数Total 64 60 93.8
平均数Mean 5.8 5.5 93.4

Table 5

Genetic diversity of quinoa materials"

引物组合
Primer combination
Na Ne H′ I PIC
A4B9 2.0000 1.4761 0.3048 0.4754 0.3360
A4B15 2.0000 1.6023 0.3523 0.5257 0.3523
A5B4 2.0000 1.3999 0.2492 0.3956 0.2491
A6B3 2.0000 1.7008 0.4011 0.5878 0.4013
A9B10 1.8889 1.4883 0.2759 0.4157 0.2760
A9B13 1.6000 1.3307 0.2012 0.3067 0.2012
A11B8 2.0000 1.5283 0.2853 0.4250 0.2855
A11B15 2.0000 1.5866 0.3438 0.5171 0.3984
A14B10 1.8333 1.6597 0.3393 0.4817 0.3393
A14B13 2.0000 1.6568 0.3783 0.5598 0.3699
A17B2 2.0000 1.4794 0.3096 0.4810 0.3097
平均值Mean 1.9375 1.5384 0.3135 0.4711 0.3199

Fig.2

UPGMA dendrogram of 60 quinoa materials"

Fig.3

Effects of cycle times on SRAP-PCR"

[1] 齐天明, 李志坚, 秦培友, 等. 藜麦栽培技术研究与应用展望. 中国农业科技导报, 2022, 24(3):157-165.
doi: 10.13304/j.nykjdb.2021.0190
[2] Jacobsen S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 2003, 19(1/2):167- 177.
doi: 10.1081/FRI-120018883
[3] Didier B, Sven-Erik J, Alexis V. The global expansion of quinoa: trends and limits. Frontiers in Plant Science, 2016, 7:622.
doi: 10.3389/fpls.2016.00622 pmid: 27242826
[4] 黄杰, 杨发荣, 刘文瑜, 等. 藜麦新品种陇藜2号选育报告. 甘肃农业科技, 2020(7):1-4.
[5] Asher A, Galili S, Whitney T, et al. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Scientia Horticulturae, 2020, 272:109534.
doi: 10.1016/j.scienta.2020.109534
[6] Repo-Carrasco R, Espinoza C, Jacobsen S E. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kaiwa (Chenopodium pallidicaule). Food Reviews International, 2003, 19(1):179-189.
doi: 10.1081/FRI-120018884
[7] Jacobsen S E, Mujica A, Jensen C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 2003, 19(1/2):99-109.
doi: 10.1081/FRI-120018872
[8] González J A, Gallardo M, Hilal M, et al. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies, 2009, 50(1):35-42.
[9] Wilson C, Read J J, Abo-Kassem E. Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 2002, 25(12):2689-2704.
doi: 10.1081/PLN-120015532
[10] 高睿, 李志坚, 秦培友, 等. 藜麦的发展与应用潜力分析. 饲料研究, 2019, 42(12):77-80.
[11] 王晨静, 赵习武, 陆国权, 等. 藜麦特性及开发利用研究进展. 浙江农林大学学报, 2014, 31(2):296-301.
[12] 林春, 刘正杰, 董玉梅, 等. 藜麦的驯化栽培与遗传育种. 遗传, 2019, 41(11):1009-1022.
[13] Maughan P J. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theoretical and Applied Genetics, 2004, 109(6):1188-1195.
pmid: 15309300
[14] Maughan P J, Smith S M, Rojas-Beltran J A, et al. Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. The Plant Genome, 2012, 5(3):114- 125.
[15] Jarvis D E. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). Journal of Genetics, 2008, 87(1):39-51.
doi: 10.1007/s12041-008-0006-6 pmid: 18560173
[16] Fuentes F F. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 2009, 10(2):369-377.
doi: 10.1007/s10592-008-9604-3
[17] Saad-Allah K M, Youssef M S. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants, 2018, 24(4):617-629.
doi: 10.1007/s12298-018-0541-4 pmid: 30042617
[18] 陆敏佳, 蒋玉蓉, 陆国权, 等. 利用SSR标记分析藜麦品种的遗传多样性. 核农学报, 2015, 29(2):260-269.
doi: 10.11869/j.issn.100-8551.2015.02.0260
[19] 孙梦涵, 邢宝, 崔宏亮, 等. 藜麦种质资源遗传多样性SSR标记分析. 植物遗传资源学报, 2021, 22(3):625-637.
doi: 10.13430/j.cnki.jpgr.20200911001
[20] 宋娇. 藜麦种质资源遗传多样性研究及藜麦品种(系)变异率分析. 西宁: 青海大学, 2018.
[21] 吴文强, 杨箐, 陈天青, 等. 藜麦种质资源的遗传多样性分析. 种子, 2021, 40(2):13-19.
[22] Zhang T F, Gu M F, Liu Y H, et al. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics, 2017, 18(1):685.
doi: 10.1186/s12864-017-4093-8 pmid: 28870149
[23] Geng J, Mou Y, Zhang J, et al. Integration of Solexa sequences on an ultradense genetic map in Brassica rapa L.. BMC Genomics, 2011, 12(1):249.
doi: 10.1186/1471-2164-12-249
[24] 司浩浩.高粱抗丝黑穗病菌4号生理小种种质生理特性与SRAP标记分析. 晋中:山西农业大学, 2021.
[25] 张旭. 基于表型性状及SRAP标记的马铃薯遗传多样性评价. 晋中: 山西农业大学, 2019.
[26] 郭利建. 基于SRAP和SSR标记的小麦产量和品质相关性状的QTL定位及效应分析. 杨凌: 西北农林科技大学, 2016.
[27] 张思棋. 亚麻种质资源遗传多样性分析及初级核心种质库的构建. 呼和浩特: 内蒙古大学, 2017.
[28] Shamustakimova A O, Mavlyutov Y M, Klimenko I A. Application of SRAP markers for DNA identification of Russian Alfalfa cultivars. Russian Journal of Genetics, 2021, 57(5):540-547.
doi: 10.1134/S1022795421050112
[29] Chen L J, Li H M, Sun S K, et al. Construction of a genetic linkage map in Lilium using a RIL mapping population based on SRAP marker. Genetika, 2015, 47(2):425-438.
doi: 10.2298/GENSR1502425C
[30] 王茂芊, 吴则东, 陈丽, 等. 利用SRAP分析东北地区甜菜品系遗传多样性. 中国糖料, 2010(2):4-8,11.
[31] 伊六喜, 斯钦巴特尔, 张辉, 等. 胡麻核心种质资源表型变异及SRAP分析. 中国油料作物学报, 2017, 39(6):794-804.
doi: 10.7505/j.issn.1007-9084.2017.06.010
[32] 张明飞, 于卓, 于肖夏, 等. 四倍体马铃薯SRAP分子遗传连锁图谱的构建. 草业学报, 2019, 28(8):190-199.
doi: 10.11686/cyxb2019230
[33] 郭凯红, 赵卫国, 王晓东, 等. 高含油量油菜品系遗传多样性分析. 陕西农业科学, 2020, 66(9):28-33.
[34] 伊六喜, 斯钦巴特尔, 高凤云, 等. 内蒙古胡麻地方品种资源遗传多样性分析. 作物杂志, 2018(6):53-57.
[35] 姚华开, 罗英舰, 郑元利, 等. 基于SRAP分子标记的马铃薯品种遗传多样性分析. 安徽农业科学, 2021, 49(15):104-107.
[36] 张鹤山, 陈志宏, 田宏, 等. 49份白三叶种质资源遗传多样性的SSR分析. 种子, 2019, 38(11):1-6.
[1] Qu Zhihua, Zhang Lili, Hu Yang, Qiao Haiming, Li Feng, Bai Wei. Agronomic Characteristics Evaluation on Introduced Flax Germplasm Resources [J]. Crops, 2023, 39(6): 47-53.
[2] Zhao Feng, Bao Qijun, Pan Yongdong, Liu Xiaoning, Zhang Huayu, Niu Xiaoxia. Comprehensive Evaluation of Genetic Diversity in 70 Barley Germplasms [J]. Crops, 2023, 39(6): 54-61.
[3] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
[4] Gao Zhanning, Yang Yongqian, Wang Shujie, Feng Hui, Xue Zhenggang. Comprehensive Evaluation of 143 Barley Germplasm Resources [J]. Crops, 2023, 39(5): 59-65.
[5] ChenZhikai , Hou Wanwei. Evaluation and Selection of Pisumsativum L. Germplasm Resources Based on Agronomic Traits [J]. Crops, 2023, 39(4): 38-43.
[6] Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64.
[7] Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229.
[8] Chen Cuiping, Yan Dianhai, Zhang Shumiao, Zuo Haonan, Gao Sen, Liu Yang. Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers [J]. Crops, 2023, 39(3): 35-42.
[9] Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185.
[10] Song Yun, Zhang Xinrui, He Jiaxin, Li Zheng, Sun Zhe, Li Aoxuan, Qiao Yonggang. Genetic Diversity Analysis of Sophora flavescens Ait. Germplasm Resources Based on cpSSR Markers [J]. Crops, 2023, 39(1): 30-37.
[11] Huang Guibin, Guan Yaobing, Niu Yongqi, Zhou Lilei, Zhao Yongfeng. Comprehensive Evaluation of 12 Major Agronomic Traits of 103 Chickpea Germplasm Resources [J]. Crops, 2023, 39(1): 6-13.
[12] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[13] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[14] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[15] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!