Crops ›› 2023, Vol. 39 ›› Issue (6): 79-85.doi: 10.16035/j.issn.1001-7283.2023.06.011
Previous Articles Next Articles
Yang Enze1(), Wang Shuyan1(), Liu Ruixiang2, Shi Fengyuan1, Zhang Jinhao1, Li Jiana1, Li Zhiwei1, Guo Zhanbin3
[1] |
齐天明, 李志坚, 秦培友, 等. 藜麦栽培技术研究与应用展望. 中国农业科技导报, 2022, 24(3):157-165.
doi: 10.13304/j.nykjdb.2021.0190 |
[2] |
Jacobsen S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 2003, 19(1/2):167- 177.
doi: 10.1081/FRI-120018883 |
[3] |
Didier B, Sven-Erik J, Alexis V. The global expansion of quinoa: trends and limits. Frontiers in Plant Science, 2016, 7:622.
doi: 10.3389/fpls.2016.00622 pmid: 27242826 |
[4] | 黄杰, 杨发荣, 刘文瑜, 等. 藜麦新品种陇藜2号选育报告. 甘肃农业科技, 2020(7):1-4. |
[5] |
Asher A, Galili S, Whitney T, et al. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Scientia Horticulturae, 2020, 272:109534.
doi: 10.1016/j.scienta.2020.109534 |
[6] |
Repo-Carrasco R, Espinoza C, Jacobsen S E. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kaiwa (Chenopodium pallidicaule). Food Reviews International, 2003, 19(1):179-189.
doi: 10.1081/FRI-120018884 |
[7] |
Jacobsen S E, Mujica A, Jensen C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 2003, 19(1/2):99-109.
doi: 10.1081/FRI-120018872 |
[8] | González J A, Gallardo M, Hilal M, et al. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies, 2009, 50(1):35-42. |
[9] |
Wilson C, Read J J, Abo-Kassem E. Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 2002, 25(12):2689-2704.
doi: 10.1081/PLN-120015532 |
[10] | 高睿, 李志坚, 秦培友, 等. 藜麦的发展与应用潜力分析. 饲料研究, 2019, 42(12):77-80. |
[11] | 王晨静, 赵习武, 陆国权, 等. 藜麦特性及开发利用研究进展. 浙江农林大学学报, 2014, 31(2):296-301. |
[12] | 林春, 刘正杰, 董玉梅, 等. 藜麦的驯化栽培与遗传育种. 遗传, 2019, 41(11):1009-1022. |
[13] |
Maughan P J. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theoretical and Applied Genetics, 2004, 109(6):1188-1195.
pmid: 15309300 |
[14] | Maughan P J, Smith S M, Rojas-Beltran J A, et al. Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. The Plant Genome, 2012, 5(3):114- 125. |
[15] |
Jarvis D E. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). Journal of Genetics, 2008, 87(1):39-51.
doi: 10.1007/s12041-008-0006-6 pmid: 18560173 |
[16] |
Fuentes F F. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 2009, 10(2):369-377.
doi: 10.1007/s10592-008-9604-3 |
[17] |
Saad-Allah K M, Youssef M S. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants, 2018, 24(4):617-629.
doi: 10.1007/s12298-018-0541-4 pmid: 30042617 |
[18] |
陆敏佳, 蒋玉蓉, 陆国权, 等. 利用SSR标记分析藜麦品种的遗传多样性. 核农学报, 2015, 29(2):260-269.
doi: 10.11869/j.issn.100-8551.2015.02.0260 |
[19] |
孙梦涵, 邢宝, 崔宏亮, 等. 藜麦种质资源遗传多样性SSR标记分析. 植物遗传资源学报, 2021, 22(3):625-637.
doi: 10.13430/j.cnki.jpgr.20200911001 |
[20] | 宋娇. 藜麦种质资源遗传多样性研究及藜麦品种(系)变异率分析. 西宁: 青海大学, 2018. |
[21] | 吴文强, 杨箐, 陈天青, 等. 藜麦种质资源的遗传多样性分析. 种子, 2021, 40(2):13-19. |
[22] |
Zhang T F, Gu M F, Liu Y H, et al. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics, 2017, 18(1):685.
doi: 10.1186/s12864-017-4093-8 pmid: 28870149 |
[23] |
Geng J, Mou Y, Zhang J, et al. Integration of Solexa sequences on an ultradense genetic map in Brassica rapa L.. BMC Genomics, 2011, 12(1):249.
doi: 10.1186/1471-2164-12-249 |
[24] | 司浩浩.高粱抗丝黑穗病菌4号生理小种种质生理特性与SRAP标记分析. 晋中:山西农业大学, 2021. |
[25] | 张旭. 基于表型性状及SRAP标记的马铃薯遗传多样性评价. 晋中: 山西农业大学, 2019. |
[26] | 郭利建. 基于SRAP和SSR标记的小麦产量和品质相关性状的QTL定位及效应分析. 杨凌: 西北农林科技大学, 2016. |
[27] | 张思棋. 亚麻种质资源遗传多样性分析及初级核心种质库的构建. 呼和浩特: 内蒙古大学, 2017. |
[28] |
Shamustakimova A O, Mavlyutov Y M, Klimenko I A. Application of SRAP markers for DNA identification of Russian Alfalfa cultivars. Russian Journal of Genetics, 2021, 57(5):540-547.
doi: 10.1134/S1022795421050112 |
[29] |
Chen L J, Li H M, Sun S K, et al. Construction of a genetic linkage map in Lilium using a RIL mapping population based on SRAP marker. Genetika, 2015, 47(2):425-438.
doi: 10.2298/GENSR1502425C |
[30] | 王茂芊, 吴则东, 陈丽, 等. 利用SRAP分析东北地区甜菜品系遗传多样性. 中国糖料, 2010(2):4-8,11. |
[31] |
伊六喜, 斯钦巴特尔, 张辉, 等. 胡麻核心种质资源表型变异及SRAP分析. 中国油料作物学报, 2017, 39(6):794-804.
doi: 10.7505/j.issn.1007-9084.2017.06.010 |
[32] |
张明飞, 于卓, 于肖夏, 等. 四倍体马铃薯SRAP分子遗传连锁图谱的构建. 草业学报, 2019, 28(8):190-199.
doi: 10.11686/cyxb2019230 |
[33] | 郭凯红, 赵卫国, 王晓东, 等. 高含油量油菜品系遗传多样性分析. 陕西农业科学, 2020, 66(9):28-33. |
[34] | 伊六喜, 斯钦巴特尔, 高凤云, 等. 内蒙古胡麻地方品种资源遗传多样性分析. 作物杂志, 2018(6):53-57. |
[35] | 姚华开, 罗英舰, 郑元利, 等. 基于SRAP分子标记的马铃薯品种遗传多样性分析. 安徽农业科学, 2021, 49(15):104-107. |
[36] | 张鹤山, 陈志宏, 田宏, 等. 49份白三叶种质资源遗传多样性的SSR分析. 种子, 2019, 38(11):1-6. |
[1] | Qu Zhihua, Zhang Lili, Hu Yang, Qiao Haiming, Li Feng, Bai Wei. Agronomic Characteristics Evaluation on Introduced Flax Germplasm Resources [J]. Crops, 2023, 39(6): 47-53. |
[2] | Zhao Feng, Bao Qijun, Pan Yongdong, Liu Xiaoning, Zhang Huayu, Niu Xiaoxia. Comprehensive Evaluation of Genetic Diversity in 70 Barley Germplasms [J]. Crops, 2023, 39(6): 54-61. |
[3] | Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42. |
[4] | Gao Zhanning, Yang Yongqian, Wang Shujie, Feng Hui, Xue Zhenggang. Comprehensive Evaluation of 143 Barley Germplasm Resources [J]. Crops, 2023, 39(5): 59-65. |
[5] | ChenZhikai , Hou Wanwei. Evaluation and Selection of Pisumsativum L. Germplasm Resources Based on Agronomic Traits [J]. Crops, 2023, 39(4): 38-43. |
[6] | Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64. |
[7] | Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229. |
[8] | Chen Cuiping, Yan Dianhai, Zhang Shumiao, Zuo Haonan, Gao Sen, Liu Yang. Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers [J]. Crops, 2023, 39(3): 35-42. |
[9] | Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185. |
[10] | Song Yun, Zhang Xinrui, He Jiaxin, Li Zheng, Sun Zhe, Li Aoxuan, Qiao Yonggang. Genetic Diversity Analysis of Sophora flavescens Ait. Germplasm Resources Based on cpSSR Markers [J]. Crops, 2023, 39(1): 30-37. |
[11] | Huang Guibin, Guan Yaobing, Niu Yongqi, Zhou Lilei, Zhao Yongfeng. Comprehensive Evaluation of 12 Major Agronomic Traits of 103 Chickpea Germplasm Resources [J]. Crops, 2023, 39(1): 6-13. |
[12] | Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22. |
[13] | Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41. |
[14] | Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60. |
[15] | Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69. |
|