Crops ›› 2024, Vol. 40 ›› Issue (5): 181-187.doi: 10.16035/j.issn.1001-7283.2024.05.026

Previous Articles     Next Articles

Effects of Elevated CO2 Concentration on Growth and Physiological Characteristics of Different Coix Cultivars

Lei Yun(), Xiong Lulu, Wang Jianjian()   

  1. College of Life Sciences / Institute of Agro-Bioengineering, Guizhou University / Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang 550025, Guizhou, China
  • Received:2023-08-23 Revised:2023-12-04 Online:2024-10-15 Published:2024-10-16

Abstract:

Utilizing Xingren white husk and Anguo black husk Coix as test materials, the study examined the effects of changing CO2 concentration on the growth and physiological characteristics of Coix. Relevant indicators were identified and two CO2 concentrations were set: natural (400±20 μmol/mol) and high (800±20 μmol/mol). The results showed that the increase of CO2 concentration significantly promoted the morphological growth and biomass accumulation of Coix, and the total biomass of Xingren white husk and Anguo black husk increased by 30.00% and 20.85%, respectively. The CO2 concentration increased, and the coixin content of two cultivars decreased significantly, and the decrease in Xingren white husk was even greater. With the increase of CO2 concentration, the catalase (CAT) activity of Xingren white husk increased significantly by 133.89%, the activity of superoxide dismutase (POD) and malondialdehyde (MDA) content decreased significantly, and the activities of CAT and POD of Anguo black husk decreased significantly, with a decrease of 69.25% and 56.37%, respectively. With the increase of CO2 concentration, the zeatin (ZA) and gibberellin (GA3) contents of Xingren white husk increased significantly, the content of auxin (IAA) and abscisic acid (ABA) decreased significantly, the decrease rate were 38.04% and 27.91%, respectively, the contents of ZA, IAA and ABA in Anguo black husk decreased significantly, the IAA content changed significantly by 64.91%, and the GA3 content increased significantly by 66.39%. In conclusion, a rise in CO2 concentration could encourage the growth of Coix, and the impact of Coix's physiological traits varied throughout varieties, and the Anguo black husk Coix was more susceptible to CO2 levels.

Key words: CO2 concentration, Coix lacryma-jobi L., Growth, Physiological characteristic

Table 1

Effects of elevated CO2 concentration on morphological indexes of different Coix cultivars"

指标Index 兴仁白壳Xingren white husk 安国黑壳Anguo black husk
aC eC aC eC
根长Root length (cm) 32.50±2.77ab 30.35±5.37b 41.43±8.91a 35.65±6.22ab
根粗Root width (mm) 3.90±0.10a 4.14±0.08a 3.00±0.31c 3.40±0.15b
株高Plant height (cm) 57.58±3.89b 84.68±5.39a 50.10±3.84c 63.47±4.35b
茎粗Stem diameter (mm) 0.98±0.08ab 1.02±0.04a 0.88±0.12b 0.97±0.08ab
叶长Leaf length (cm) 40.52±4.33b 46.93±2.86a 33.28±1.79c 37.77±3.02b
叶宽Leaf width (cm) 2.75±0.10b 3.00±0.06a 2.42±0.12c 3.00±0.13a
叶面积Leaf area (cm2) 80.12±1.50c 108.75±0.52a 61.45±2.20d 83.72±1.98b
叶片数Number of blades 10.33±1.75b 11.83±1.33b 17.17±1.72a 17.17±1.17a

Table 2

Effects of elevated CO2 concentration on biomass accumulation and distribution of different Coix cultivars"

指标
Index
兴仁白壳Xingren white husk 安国黑壳Anguo black husk
aC eC aC eC
根生物量Root biomass (g) 1.86±0.11c 2.53±0.22a 2.04±0.29bc 2.43±0.20ab
茎生物量Stem biomass (g) 1.22±0.05c 1.74±0.01a 1.13±0.02d 1.59±0.04b
叶生物量Leaf biomass (g) 1.11±0.01b 1.19±0.04a 1.05±0.04c 1.08±0.00bc
总生物量Total biomass (g) 4.20±0.07c 5.46±0.23a 4.22±0.23c 5.10±0.19b
根生物量比Root biomass ratio 0.44±0.02a 0.46±0.02a 0.48±0.04a 0.48±0.02a
茎生物量比Stem biomass ratio 0.29±0.02ab 0.32±0.01a 0.27±0.02b 0.31±0.02a
叶生物量比Leaf biomass ratio 0.27±0.01a 0.22±0.01b 0.25±0.02a 0.21±0.01b
根冠比Root-shoot ratio 0.80±0.07a 0.86±0.07a 0.94±0.16a 0.91±0.08a

Table 3

Effects of elevated CO2 concentration on chlorophyll and secondary metabolite contents in different Coix cultivars"

指标
Index
兴仁白壳Xingren white husk 安国黑壳Anguo black husk
aC eC aC eC
SPAD 23.85±3.02b 22.20±0.71b 27.13±1.94a 27.95±1.50a
薏苡素Coix content (mg/100g) 44.60±0.16a 31.10±0.06c 34.31±0.68b 28.54±0.64d
总酚Total phenolic content (mg/100g) 2.56±0.14a 2.40±0.13a 2.44±0.04a 2.39±0.21a
类黄酮Flavonoid content (mg/100g) 60.99±6.23a 56.11±5.34a 59.59±2.07a 60.77±2.01a

Fig.1

Effects of elevated CO2 concentration on antioxidant enzyme activities and MDA contents of different Coix cultivars Different lowercase letters indicate significant difference at 5% level, the same below."

Fig.2

Effects of elevated CO2 concentration on endogenous hormone contents of different Coix cultivars"

[1] 张凯, 王润元, 王鹤龄, 等. CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究. 干旱气象, 2017, 35(2):306-312.
doi: 10.11755/j.issn.1006-7639(2017)-02-0306
[2] 王娇, 李萍, 宗毓铮, 等. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报, 2023, 31(2):325-335.
[3] 熊露露. CO2浓度和温度升高对薏苡生理生态特性的影响.贵阳: 贵州大学, 2022.
[4] Madhu M, Hatfield J L. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 2013,105:657-669.
[5] 黄兴敏, 邓小红, 彭海兰, 等. CO2浓度和温度升高对吉祥草生理生态特性的影响. 北方园艺, 2022(14):101-108.
[6] 田露. 水稻幼苗对高浓度CO2和水分胁迫的生理响应研究. 沈阳: 沈阳师范大学, 2016.
[7] 洪凯, 李茂, 许珊珊, 等. CO2浓度升高对杉木幼苗生长及其光合特性和养分含量的影响. 西北植物学报, 2020, 40(6):1011-1021.
[8] 潘鸿, 曹吉鑫, 陈展, 等. CO2浓度升高对木荷幼苗光合特征的影响. 生态学杂志, 2022, 41(5):865-872.
[9] 李秀华, 苏文华, 周鸿, 等. 大气二氧化碳倍增对短葶飞蓬生长和有效成分积累的影响. 应用生态学报, 2009, 20(8):1852-1856.
[10] 徐辉. 茶树对大气CO2浓度与温度升高的响应机制研究. 南京: 南京农业大学, 2016.
[11] 夏晔, 胡正华, 刘超, 等. 不同大气CO2浓度升高与施氮互作对冬小麦光合与生长的影响. 农业现代化研究, 2019, 40(2):333-341.
[12] 姜倩倩, 刘超, 胡正华, 等. 不同CO2浓度升高和氮肥水平对水稻叶绿素荧光特性的影响. 生态学报, 2021, 41(12):4953-4962.
[13] 李常鑫, 闫琪, 倪莉莉, 等. 大气CO2浓度升高对玉米非结构性碳水化合物和籽粒品质的影响. 应用生态学报, 2023, 34 (1):123-130.
doi: 10.13287/j.1001-9332.202301.010
[14] 赵振然. 薏苡仁提取液与替莫唑胺联合应用对神经胶质瘤的协同治疗作用. 青岛: 青岛大学, 2022.
[15] 周红灿, 尹伟丹, 揭红东, 等. 薏苡种质资源性状评价及遗传多样性研究. 热带作物学报, 2022, 43(7):1365-1374.
doi: 10.3969/j.issn.1000-2561.2022.07.007
[16] 姬拉拉. 薏苡(Coix lacryma-jobi)对CO2浓度升高与氮肥施加的生理响应研究. 贵阳: 贵州大学, 2021.
[17] 程丽萍. 柑橘药用资源枳雀功能成分及药用价值挖掘与机制研究. 武汉: 华中农业大学 2020.
[18] 王兴瑞, 陈昀昀, 韩玉泽, 等. 青海亚麻籽总酚含量测定及其抗氧化活性研究. 中国油脂, 2020, 45(8):121-124,137.
[19] 杨阳, 杜疏炀, 孙艺琦, 等. 不同产地薏苡中有效成分甘油三油酸酯和薏苡素的测定. 中草药, 2017, 48(3):578-581.
[20] 李合生, 孙群, 赵世杰. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000.
[21] 陈千思, 卢紫舒, 沈少君, 等. HPLC-MS/MS法测定烟叶中7种植物内源激素. 烟草科技, 2018, 51(11):51-57.
[22] 刘紫娟, 杨宗鹏, 李萍, 等. 大气CO2浓度升高对八宝景天生长及光合生理的影响. 应用生态学报, 2017, 28(6):1969-1976.
[23] 圣倩倩, 高顺, 顾舒文, 等. CO2浓度升高对植物生理生化影响的研究进展. 西部林业科学, 2021, 50(3):171-176.
[24] 袁蕊, 聂磊云, 郝兴宇, 等. 大气CO2浓度升高对辣椒光合作用及相关生理特性的影响. 生态学杂志, 2017, 36(12):3510-3516.
[25] 高宇, 崔世茂, 宋阳, 等. CO2加富对温室辣椒幼苗生长及光合特性的影响. 作物杂志, 2017(5):80-84.
[26] 刘士玲, 陈琳, 庞圣江, 等. 施N、P肥对西南桦无性系幼苗生长及叶片N、P含量的影响. 华南农业大学学报, 2020, 41 (2):111-116.
[27] 任朝辉, 田浩, 廖卫琴, 等. 磷肥不同施用量对辣椒生长农艺性状及产量的影响. 辣椒杂志, 2021, 19(1):10-13.
[28] Ainsworth E A, Rogers A, Vodkin L O, et al. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology, 2006, 142(1):135-147.
[29] 杨昊天, 李新荣, 王增如, 等. 腾格里沙漠东南缘4种灌木的生物量预测模型. 中国沙漠, 2013, 33(6):1699-1704.
doi: 10.7522/j.issn.1000-694X.2013.00254
[30] 肖列. CO2浓度升高、干旱胁迫和施氮对白羊草生长和根际微生物的影响. 杨凌: 西北农林科技大学 2015.
[31] 黄兴敏, 邓小红, 彭海兰, 等. CO2浓度升高和氮沉降对吉祥草生长及品质的影响. 北方园艺, 2023(6):104-111.
[32] 刘月炎, 邓小红, 王锐洁, 等. CO2浓度升高和干旱对虎耳草生长及有效成分的影响. 北方园艺, 2023(2):96-103.
[33] 郭丽丽, 房蕊, 李彦生, 等. 长期大气CO2浓度和温度升高对玉米生物量及根际磷组分的影响. 土壤与作物, 2022, 11(3):248-260.
[34] 肖昱承, 杜彦磊, 周永贤, 等. 微塑料添加对小麦苗期生长及干物质分配的影响. 中国沙漠, 2023, 43(1):142-149.
doi: 10.7522/j.issn.1000-694X.2022.00081
[35] 郭芳芸, 哈蓉, 马亚平, 等. CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响. 西北植物学报, 2019, 39(2):302-309.
[36] 高苗琴. CO2浓度和温度升高、氮添加对杂交杨光合特性及生物量分配的影响. 晋中: 山西农业大学 2020.
[37] 刘晟彤. 模拟CO2浓度升高及降水变化对红砂幼苗生物量分配及植株—土壤碳氮特征的影响. 兰州: 甘肃农业大学, 2018.
[38] 张凤哲, 谢立勇, 赵洪亮, 等. 大气CO2浓度升高条件下施加生物炭对水稻生物量分配及产量的影响. 植物营养与肥料学报, 2021, 27(6):929-937.
[39] 金殿玉, 谢立勇, 赵洪亮, 等. 大气CO2浓度升高条件下稻稗共生系统中稗草对水稻光合生理的影响. 中国农业气象, 2022, 43(3):204-214.
[40] 王璐, 张小琴, 李萍, 等. 温度和CO2浓度升高对甜椒光合生理和虫害发生的影响. 生态学杂志, 2020, 39(12):4022-4030.
[41] 赵天宏, 孙加伟, 付宇, 等. CO2和O3浓度升高对春小麦活性氧代谢及抗氧化酶活性的影响. 中国农业科学, 2009, 42(1):64-71.
[42] 翟晓朦, 臧春鑫, 王敏, 等. CO2浓度升高对不同秋眠型苜蓿内源激素含量的影响. 草业科学, 2016, 33(3):442-449.
[43] 黄桃鹏, 李媚娟, 王睿, 等. 赤霉素生物合成及信号转导途径研究进展. 植物生理学报, 2015, 51(8):1241-1247.
[44] 胡鹏伟, 黄桃鹏, 李媚娟, 等. 脱落酸的生物合成和信号调控进展. 生命科学, 2015, 27(9):1193-1196.
[45] Li X M, He X Y, Zhang L H, et al. Influence of elevated CO2 and O3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. Biologia Plantarum, 2009,53:339-342.
[46] Wang Y, Du S T, Li L L, et al. Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Pedosphere, 2009, 19(5):570-576.
[47] 翟开恩, 潘伟槐, 叶晓帆, 等. 高等植物局部生长素合成的生物学功能及其调控机制. 植物学报, 2015, 50(2):149-158.
doi: 10.3724/SP.J.1259.2015.00149
[1] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[2] Zhang Xuli, Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong. Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings [J]. Crops, 2024, 40(5): 204-211.
[3] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[4] Zhang Ziyi, Wang Xuehu, Yuan Ying, Shen Zhifeng. Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress [J]. Crops, 2024, 40(4): 263-268.
[5] Wu Yongbing, Yuan Huaen, Zhang Ying, Chen Yongwei, Yang Weili, He Zhengchuan, Zhao Mingqin. Dynamic Changes in Root Tissue Structure and Root and Above-Ground Growth of Cigar Tobacco at Different Ridge Heights [J]. Crops, 2024, 40(3): 148-155.
[6] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[7] Li Zhi, Guo Xiaoxia, Huang Chunyan, Jian Caiyuan, Tian Lu, Han Kang, Ren Xiaoyun, Ren Huimin, Zhang Peng, Liu Jia, Kong Dejuan, Wang Zhenzhen, Su Wenbin. Effects of Nitrogen Base Fertilizer and Topdressing Ratio on the Growth, Yield and Sugar Content of Sugar Beet under Shallow Buried Drip Irrigation [J]. Crops, 2024, 40(3): 186-191.
[8] Zhang Ruipu, Wang Na, Wang Kexin, Liu Jindong, Gao Xiaoli. Effects of Plant Growth Regulator S3307 on Physiological Metabolism of Mung Bean [J]. Crops, 2024, 40(2): 198-205.
[9] He Jiamin, Zhang Yongqing, Zhang Meng, Liang Ping, Wang Dan, Yan Fanfan. Effects of Seed Soaking with Uniconazole on Agronomic and Physiological Characteristics of Quinoa under Saline-Alkali Stress [J]. Crops, 2024, 40(2): 234-241.
[10] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[11] Liu Hongjie, Ren Dechao, Ge Jun, Zhang Suyu, Lü Guohua, He Xun. Effects of Accumulated Temperature and Planting Density on Pre-Winter Growth of Wheat [J]. Crops, 2024, 40(1): 141-147.
[12] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[13] Xiu Junjie, Liu Xueliang. Effects of Water and Nitrogen Interaction on Physiological Characteristics and Growth of Peanut during the Pod-Pin Stage [J]. Crops, 2023, 39(6): 174-180.
[14] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[15] Liu Chen, Yang Mingfeng, Yang Long, Zhang Nan, Yu Tao. Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco [J]. Crops, 2023, 39(5): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!