Crops ›› 2025, Vol. 41 ›› Issue (2): 189-195.doi: 10.16035/j.issn.1001-7283.2025.02.026

Previous Articles     Next Articles

Effects of CO2 Enrichment and Phosphorus Level on Seedling Growth and Nutrient Element Absorption of Capsicum anmuum L.

Lei Yun(), Liu Yueyan, Wang Jianjian()   

  1. College of Life Sciences, Guizhou University / Institute of Agro-Bioengineering / Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang 550025, Guizhou, China
  • Received:2023-10-09 Revised:2023-11-20 Online:2025-04-15 Published:2025-04-16

Abstract:

In order to explore the effects of CO2 enrichment, phosphorus supply level and their interaction on the seedling growth and nutrient element absorption of Capsicum anmuum L., Yanjiao 425 was used as the test material, and the morphological indexes, biomass and nutrient element content indexes of C.anmuum L. were determined under the treatment of two CO2 concentrations (natural CO2 concentration: 400±30 μmol/mol, CO2 enrichment: 800±30 μmol/mol) and three phosphorus supply levels (0, 50, and 250 mg/kg P). The results showed that CO2 enrichment alone, increasing phosphorus supply level alone, and their interaction all promoted the morphological growth and biomass accumulation of chili pepper. With CO2 enrichment or increase of phosphorus supply level, the content of C in roots, stems and leaves of chili pepper increased significantly, while the contents of N and K decreased significantly. Phosphorus application also promoted the absorption of P by chili pepper. CO2 enrichment could significantly increase C/N, C/K, C/P, N/P of chili pepper; the phosphorus supply level had no significant effect on C/N and C/K in all organs of chili pepper, and C/P and N/P were significantly reduced. Compared with CK, the interaction between CO2 enrichment and the application of phosphorus fertilizer significantly increased the C/N, and significantly reduced the C/K, C/P and N/P of chili pepper. CO2 enrichment could increase the overall contents of Mg, Fe, Mn, Zn in chili pepper, and reduce Ca content. Increasing phosphorus level could increase the overall contents of Ca, Mg, Fe and Zn in chili pepper and decrease Mn content. The interaction between CO2 enrichment and increasing phosphorus level could promote the absorption of Mg, Fe, Mn, Zn and inhibit the absorption of Ca. In summary, in the actual production process, the CO2 concentration can be appropriately increased, and the reasonable and appropriate application of phosphorus fertilizer is conducive to the growth of chili pepper and the absorption of nutrients in soil.

Key words: CO2 enrichment, Phosphorus fertilizer, Chili pepper, Growth, Nutrient element absorption

Table 1

Experimental scheme of CO2 concentration and phosphorus fertilizer treatment"

处理
Treatment
CO2浓度
CO2 concentration (μmol/mol)
磷水平
Phosphorus level (mg/kg )
CK 400±30 0
CM 400±30 50
CH 400±30 250
EK 800±30 0
EM 800±30 50
EH 800±30 250

Table 2

Effects of CO2 enrichment and applying phosphorus fertilizer on root morphology of C.anmuum L."

处理
Treatment
总根长
Total root length (cm)
主根直径
Taproot diameter (mm)
根表面积
Root surface area (cm2)
根体积
Root volume (cm3)
根尖数
Number of root tips
分叉数
Number of bifurcations
CK 1541.75±117.22d 0.53±0.03d 305.71±14.61d 5.09±0.42d 5335.33±55.63e 23 930.33±1383.46e
CM 1866.54±62.50c 0.60±0.03c 399.09±11.68c 6.34±0.63c 8372.33±126.50d 30 698.67±910.47d
CH 2485.72±79.70ab 0.62±0.03c 392.78±7.23c 6.47±0.37c 12 282.00±778.53a 48 327.00±612.77a
EK 1927.81±57.73c 0.67±0.06b 412.24±20.26c 6.34±0.62c 9892.00±389.91b 30 906.33±1431.80d
EM 2396.90±108.52b 0.69±0.01b 474.32±56.08b 8.23±0.66b 10 922.33±1115.61bc 36 300.67±606.31b
EH 2593.86±109.36a 0.79±0.05a 579.24±25.13a 9.69±0.48a 9435.44±2299.85c 35 335.72±8171.19c

Table 3

Effects of CO2 enrichment and applying phosphorus fertilizer on shoot morphological indices of C.anmuum L."

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎高
Main stem
height (cm)
冠幅
Crown width
(cm)
叶长
Leaf length
(cm)
叶宽
Leaf width
(cm)
叶面积
Leaf area
(cm2)
叶周长
Leaf circumference
(cm)
CK 21.42±3.40e 4.24±0.22d 13.52±1.21b 19.10±1.77e 7.23±0.87 3.04±0.27 11.78±1.38 18.69±1.72
CM 23.74±3.41de 4.87±0.27c 14.00±2.21b 20.84±1.60de 8.27±1.43 3.36±0.04 15.14±1.29 21.91±1.91
CH 25.84±1.81cd 4.91±0.45c 14.64±1.28ab 23.20±2.34cd 8.44±1.73 3.61±0.12 17.90±2.06 23.38±1.14
EK 28.14±3.01bc 5.54±0.33b 14.98±0.64ab 25.24±3.89bc 7.31±0.69 3.41±0.10 14.89±0.69 20.60±0.47
EM 30.00±3.37b 5.86±0.43b 16.16±1.25a 27.07±2.67b 9.36±0.61 3.70±0.22 18.59±1.89 24.29±0.82
EH 35.14±5.21a 6.33±0.29a 16.28±0.91a 31.20±20.9a 11.33±0.12 4.19±0.17 25.65±1.75 30.00±1.22

Table 4

Effects of CO2 enrichment and applying phosphorus fertilizer on biomass accumulation of C.anmuum L. g"

处理
Treatment
根生物量
Root biomass
茎生物量
Stem biomass
叶生物量
Leaf biomass
总生物量
Total biomass
CK 0.72±0.27d 0.80±0.08e 1.86±0.09d 3.38±0.38e
CM 1.06±0.15cd 1.25±0.08d 2.26±0.05c 4.57±0.15d
CH 1.13±0.26cd 1.36±0.10d 2.40±0.18c 4.89±0.36d
EK 1.43±0.41bc 1.79±0.10c 2.35±0.17c 5.57±0.48c
EM 1.69±0.49ab 2.08±0.12b 2.66±0.12b 6.43±0.41b
EH 2.09±0.32a 3.28±0.06a 3.78±0.06a 9.15±0.36a

Table 5

Effects of CO2 enrichment and applying phosphorus fertilizer on C, N, P and K contents of C.anmuum L. g/kg"

器官
Organ
处理
Treatment
C N P K

Root
CK 393.79±1.79c 32.94±0.65b 1.44±0.01c 37.84±1.26b
CM 404.26±0.41b 34.54±0.49a 4.07±0.05a 47.41±1.17a
CH 408.47±7.28b 34.11±0.31a 4.10±0.03a 48.50±0.66a
EK 419.82±3.13a 30.95±0.85c 1.32±0.03d 34.17±1.97c
EM 416.51±2.08a 30.21±0.18cd 3.22±0.04b 39.69±1.16b
EH 420.88±2.34a 29.95±0.28d 3.23±0.02b 30.45±1.27d

Stem
CK 60.78±6.70b 11.24±0.74a 1.09±0.04bc 75.94±3.69a
CM 63.87±10.10ab 12.09±1.09a 1.31±0.02a 44.58±3.23d
CH 75.66±5.84a 11.86±0.35a 1.34±0.04a 74.75±0.92a
EK 73.75±6.43a 7.47±0.13c 1.03±0.07c 68.14±3.41b
EM 74.21±3.20a 8.86±0.13b 1.12±0.13bc 57.98±3.02c
EH 71.14±1.60ab 8.16±0.35bc 1.18±0.02b 56.70±1.65c
CK 425.42±0.41c 85.77±0.54a 2.25±0.04d 74.11±7.13a

Leaf
CM 430.58±0.88bc 78.46±1.12b 4.84±0.03a 70.96±1.79a
CH 430.93±1.70bc 79.16±0.22b 4.85±0.04a 69.68±2.16a
EK 434.49±5.08ab 59.39±0.46e 1.88±0.04e 60.32±1.26b
EM 440.06±7.80a 64.14±0.23c 3.29±0.04b 59.23±1.71b
EH 438.52±4.83ab 61.29±0.33d 3.17±0.03c 52.54±3.21c

Fig.1

Effects of CO2 enrichment and applying phosphorus fertilizer on ecological stoichiometric ratio of C.annuum L. Different lowercase letters indicate significant difference at the P < 0.05 level, the same below."

Table 6

Effects of CO2 enrichment and applying phosphorus fertilizer on Ca, Mg, Fe, Mn and Zn contents of C.anmuum L. mg/kg"

器官Organ 处理Treatment Ca Mg Fe Mn Zn
根Root CK 17.51±0.47c 3.42±0.59c 942.09±11.28d 1165.95±32.53a 509.59±2.61c
CM 28.54±0.25a 4.46±0.05b 1224.20±9.33b 996.30±17.24bc 449.47±5.24d
CH 25.43±0.77b 6.02±0.22a 1581.59±15.06a 963.58±29.55c 624.86±4.55b
EK 24.45±1.88b 4.55±0.69b 773.23±11.96e 963.04±4.76c 394.43±12.12e
EM 25.15±1.63b 4.82±0.67b 986.48±11.57c 1159.97±29.64a 764.14±49.34a
EH 25.26±1.75b 4.66±0.47b 922.18±24.29d 1036.28±14.43b 461.33±8.66d
茎Stem CK 17.93±0.18b 6.47±0.50b 153.20±4.23f 368.32±8.25e 134.10±11.70e
CM 12.78±0.79c 5.77±0.28c 339.90±11.60e 316.63±3.74f 126.66±4.99e
CH 20.43±0.07a 7.42±0.37a 387.42±7.90d 583.24±9.02b 202.04±7.36d
EK 13.50±0.39c 5.50±0.07c 844.43±5.88b 471.72±18.87c 343.03±13.40c
EM 13.08±0.96c 5.46±0.33c 678.45±10.38c 411.05±12.12d 885.77±7.76b
EH 11.20±0.41d 5.44±0.06c 931.09±4.11a 768.94±17.96a 912.48±4.86a
CK 22.99±2.61a 6.98±0.17c 230.92±6.08a 631.69±6.42d 367.67±8.66b
叶Leaf CM 19.71±0.66b 7.54±0.37a 165.55±1.90c 665.50±3.43c 429.89±11.66a
CH 19.64±0.42b 7.31±0.29ab 215.09±2.44b 739.34±17.39b 274.90±1.54c
EK 19.18±0.89b 7.54±0.36a 82.86±2.79e 735.86±13.40b 273.29±1.37c
EM 19.35±0.47b 7.57±0.23a 91.46±4.77d 753.60±7.68b 237.84±10.24d
EH 17.79±0.44b 7.18±0.08ab 86.81±4.61de 993.15±6.31a 244.49±5.90d
[1] 袁潮, 杨文艳, 孙卓, 等. 大气CO2浓度年际变化及其对农业的影响. 陕西农业科学, 2020, 66(9):91-96.
[2] Plattner G K. IPCC 2014: Climate Change 2014:Synthesis Report. Contribution of Working Groups Ⅰ, ⅠⅠ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change. Journal of Romance Studies, 2014, 4(2):85-88.
[3] 张凯, 王润元, 王鹤龄, 等. CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究. 干旱气象, 2017, 35(2):306-312.
doi: 10.11755/j.issn.1006-7639(2017)-02-0306
[4] 王娇, 李萍, 宗毓铮, 等. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报, 2023, 31(2):325-335.
[5] 熊露露. CO2浓度和温度升高对薏苡生理生态特性的影响. 贵阳:贵州大学, 2022.
[6] Madhu M, Hatfield J L. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 2013,105:657-669.
[7] 黄兴敏, 邓小红, 彭海兰, 等. CO2浓度和温度升高对吉祥草生理生态特性的影响. 北方园艺, 2022(14):101-108.
[8] 邓小红. CO2浓度、温度升高和氮沉降对吉祥草生理生态特性的影响. 贵阳:贵州大学, 2021.
[9] 王冰. 低磷条件下SAMS1对番茄根系生长和磷素利用的作用效果研究. 泰安:山东农业大学, 2022.
[10] 肖雨萌. 磷素营养水平对不同生育期菊芋生长及光合特性的影响. 兰州:兰州大学, 2018.
[11] Alewell C, Ringeval B, Ballabio C, et al. Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 2020, 11(1):4546.
doi: 10.1038/s41467-020-18326-7 pmid: 32917863
[12] 杜涛. 贵州从“辣椒大省”迈向“辣椒强省”. 中国食品报, 2021-09-27(002).
[13] 王文富. 中国土壤. 北京: 中国农业出版社, 1998.
[14] 白晓珂. 氮添加、增温和降雨增加对黄土高原紫花苜蓿叶片化学计量学特征的影响. 兰州:兰州大学, 2019.
[15] 姬拉拉. 薏苡(Coix lacryma-jobi)对CO2浓度升高与氮肥施加的生理响应研究. 贵阳:贵州大学, 2021.
[16] Gielen B, Calfapietra C, Claus A, et al. Crown architecture of Populus spp. is differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist, 2002, 153(1):91-99.
[17] 胡晓雪, 宗毓铮, 张仟雨, 等. CO2浓度升高对万寿菊生长发育与光合生理的影响. 核农学报, 2017, 31(6):1210-1216.
doi: 10.11869/j.issn.100-8551.2017.06.1210
[18] 袁蕊, 聂磊云, 郝兴宇, 等. 大气CO2浓度升高对辣椒光合作用及相关生理特性的影响. 生态学杂志, 2017, 36(12):3510-3516.
[19] 高宇, 崔世茂, 宋阳, 等. CO2加富对温室辣椒幼苗生长及光合特性的影响. 作物杂志, 2017(5):80-84.
[20] Ainsworth E A, Rogers A, Vodkin L O, et al. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiology, 2006, 142(1):135-147.
[21] 任朝辉, 田浩, 廖卫琴, 等. 磷肥不同施用量对辣椒生长农艺性状及产量的影响. 辣椒杂志, 2021, 19(1):10-13.
[22] Hada N, Wasnik V K, Bhadauria S S, et al. Influence of balanced nutrition, seed rate and plant geometry on fodder maize in south- eastern Rajasthan. Range Management and Agroforestry, 2017, 37(2):243-247.
[23] 刘士玲, 陈琳, 庞圣江, 等. 施N、P肥对西南桦无性系幼苗生长及叶片N、P含量的影响. 华南农业大学学报, 2020, 41(2):111-116.
[24] 肖列. CO2浓度升高、干旱胁迫和施氮对白羊草生长和根际微生物的影响. 杨凌:西北农林科技大学, 2015.
[25] 圣倩倩, 高顺, 顾舒文, 等. CO2浓度升高对植物生理生化影响的研究进展. 西部林业科学, 2021, 50(3):171-176.
[26] Padraic J F, Jeremy H, Mark G M. Natural genetic variation in plant photosynthesis. Trends in Plant Science, 2011, 16(6):327-335.
doi: 10.1016/j.tplants.2011.02.005 pmid: 21435936
[27] 麻雪艳, 周广胜. 基于光合产物动态分配的玉米生物量模拟. 应用生态学报, 2016, 27(7):2292-2300.
doi: 10.13287/j.1001-9332.201607.026
[28] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Science of the United States of America, 2004, 101 (30):11001-11006.
[29] Taub D R, Wang X Z. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology, 2008, 50(11):1365-1374.
[30] 陈雨娇, 李汛, 田兴军, 等. CO2浓度与氮磷供应水平对黄瓜根系生长及各组织矿质养分含量的影响. 土壤, 2020, 52(6):1129-1138.
[31] 依里帆·艾克拜尔江, 李进, 庄伟伟. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系. 西北植物学报, 2022, 42(8):1384-1395.
[32] 王佳, 冯晓淼, 芈书贞, 等. 模拟降雨量变化与CO2浓度升高对小麦光合特性和碳氮特征的影响. 水土保持研究, 2020, 27(1):328-334.
[33] 王雪梅, 闫帮国, 王梓丞, 等. 不同土壤和微量元素对车桑子幼苗生长的影响. 热带亚热带植物学报, 2023, 31(5):695-704.
[1] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[2] Li Qibiao, Zhang Xuejiao, Xu Lei, Hu Yonghua, Xu Zhijun. Effects of Biochar Combined with Bacillus on Soil Nutrients and Bacterial Communities in the Rhizosphere of Pakchoi [J]. Crops, 2025, 41(2): 207-214.
[3] Wu Lu, Zhang Hao, Yang Feiyun, Guo Erjing, Si Linlin, Cao Kai, Cheng Chen. Adaptability Assessment of WOFOST Model for Simulating Rice Growth and Development in the Jianghuai Region [J]. Crops, 2025, 41(2): 215-221.
[4] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[5] Lu Yu, Zhang Yanyan, Chen Haitao, Li Manxin, Bai Runʼe, Lei Caiyan. Effects of Exogenous Spermidine on the Interaction between Bemisia tabaci and Cucumber [J]. Crops, 2025, 41(2): 256-264.
[6] Yang Ruping, Jia Zhen, Wei Ying, Wei Yechou, Wang Liming, Chen Guangrong, Zhang Guohong, Song Wenwen. The Relationship between the Growth Period Traits of Soybean Varieties from Various Regions of Gansu and Meteorological Factors as well as Agronomic Traits [J]. Crops, 2025, 41(1): 123-132.
[7] Jing Maoya, Zhang Ziyu, Zhang Meng, He Jiamin, Yan Fanfan, Gao Yanmei, Zhang Yongqing. Effects of Seed Soaking with Salicylic Acid on Seed Germination and Seedling Growth of Quinoa under Salt Stress [J]. Crops, 2025, 41(1): 194-201.
[8] Zhang Baolong, He Jun, Zhang Yi, Tang Chi, Zhang Hongtao, Liao Wei, Li Fei. Effects of Slow-Release Fertilizers on Rice Growth Characteristics, Yield and Dry Matter Accumulation [J]. Crops, 2025, 41(1): 214-219.
[9] Hou Saisai, Li Chang, Li Qingyun, Wang Xinxin. Study on Strategies of Growth and Phosphorus Uptake of Chinese Cabbage at Different Phosphorus Supply Levels [J]. Crops, 2025, 41(1): 220-226.
[10] Wang An, Chen Zhanxu, Kong Jingxu, Wu Siyuan, He Shaowei, Zhang Jialing, Wan Wei. Identification Method of Plant Growth Stages Based on Improved ResNet18 and Realization of Intelligent Plant Lighting Supplement [J]. Crops, 2025, 41(1): 250-259.
[11] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[12] E Lifeng, Xu Jinchong, Chen Xiubin, Quan Jianhua, Hua Jun, Yin Lijuan, Wang Shunqi, Zhao Wenqin. Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress [J]. Crops, 2024, 40(6): 212-217.
[13] Hu Yaqing, Li Chunqing, Wang Guan, Xu Jiang. Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage [J]. Crops, 2024, 40(6): 218-225.
[14] Dong Yang. Effects of Low Temperature Stress on Cold-Tolerance of Broomcorn Millet Varieties with Different Cold-Tolerance at Seedling Stage [J]. Crops, 2024, 40(6): 91-96.
[15] Lei Yun, Xiong Lulu, Wang Jianjian. Effects of Elevated CO2 Concentration on Growth and Physiological Characteristics of Different Coix Cultivars [J]. Crops, 2024, 40(5): 181-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!