Crops ›› 2017, Vol. 33 ›› Issue (4): 67-71.doi: 10.16035/j.issn.1001-7283.2017.04.012

Previous Articles     Next Articles

Analysis of Grain Traits and Physicochemical Properties of Starch in Rice Floury Endosperm Mutant flo(t)

He Bingshu1,2,Zhong Yuyue1,Qiao Yongli2,Guo Dongwei1   

  1. 1 College of Agronomy,Northwest A&F University,Yangling 712100,Shaanxi,China;
    2 Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2017-03-09 Revised:2017-05-22 Online:2017-08-15 Published:2018-08-26
  • Contact: Dongwei Guo

Abstract:

Starch is the main storage material of rice endosperm. The analysis of its physical and chemical properties has great theoretical and practical significance for the appearance and taste improvement of rice. In this study, a stable inherited powdery endosperm mutant flo(t), the mutant plant table was screened from the Hwacheong mutant library of japonica rice treated with N-methyl N-nitrosourea (MNU). In the phenotypic aspect of the mutant plants, the plant height and the number of grains per spike were significantly lower than the wild type, and the seed endosperm showed white opacity. Compared with wild type, the 1000-grain weight of flo(t) mutant was reduced by 15%, and the content of amylose were decreased, but the content of protein and lipid increased significantly. The results of scanning electron microscopy showed that the flo(t) mutant consisted of regular and rounded starch granules with different sizes and large intervals, and the crystal structure and thermodynamic properties of starch were also changed significantly.

Key words: Rice, Starch, Floury endosperm, Physicochemical property

Table 1

Comparison of grain and yield traits in wild-type and mutant"

类型
Type
粒长(mm)
Grain length
粒宽(mm)
Grain width
粒厚(mm)
Grain thickness
千粒重(g)
1000-grain weight
穗数
No. of panicles/plant
穗粒数
No. of grains/panicle
株高(cm)
Plant height
主穗长(cm)
Panicle length
野生型Wild-type 6.74±0.28 3.02±0.23 2.24±0.01 20.86±0.22 10.4±1.12 81.0±11.14 70.4±1.28 17.40±0.80
突变体Mutant 6.68±0.32 3.17±0.23 2.12±0.01 17.61±0.24** 12.2±0.76 72.0±4.00* 63.2±1.44** 15.88±0.83

Fig.1

Physicochemical properties of wild-type and mutant * indicates the difference between mutant and wild-type is significant,** indicates the difference between mutant and wild-type is remarkable"

Fig.2

X-ray diffraction patterns of starch granules from the endosperm"

Fig.3

DSC curves of starch granules from the endosperm"

Table 2

Thermal characteristics"

类型Type 起始温度Initial temperature (℃) 峰值温度Peak temperature(℃) 终止温度Termination temperature(℃) 热焓值Enthalpy(J/g)
野生型Wild-type 30.1 119.5 252.3 305
突变体Mutant 30.7 123.5 222.6 207
[1] Liu F, Ren Y L, Wang Y H , et al. OsVPS9A functions cooperatively with OsRAB5A to regulate post-golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Molecular Plant, 2013,6(10):1918-1932.
doi: 10.1093/mp/sst081
[2] Hikaru S, Kensuke S , et al.Takashi T. Mutation of the plastidial a-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell, 2008,20(7):1833-1849.
doi: 10.1105/tpc.107.054007
[3] 康国章, 王永华, 郭天财 , 等. 植物淀粉合成的调控酶. 遗传, 2006,28(1):110-116.
doi: 10.3321/j.issn:0253-9772.2006.01.020
[4] Aiko N, Yasunori N, Naoki T , et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology, 2001,127(10):459-472.
doi: 10.1104/pp.010127
[5] Takayuki S, Perigio B F, Francisco J , et al. Chlorella starch branching enzyme II (BEII) can complement the function of BEIIb in rice endosperm. Plant Cell Physiology, 2009,50(6):1062-1074.
doi: 10.1093/pcp/pcp058
[6] Zeng D L, Yan M X, Wang Y H , et al. Du1,encoding a novel Prp1 protein,regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Molecular Biology 2007,65(8):501-509.
doi: 10.1007/s11103-007-9186-3
[7] Masayuki I, Yasuyuki M, Aya T , et al. Du3,a mRNA cap-binding protein gene,regulates amylose content in japonica rice seeds. Plant Biotechnology, 2008,25(7):483-487.
doi: 10.1016/j.fm.2004.01.015
[8] 郭立泉, 辛若竹, 鲍钧镝 , 等. 大米中直链淀粉含量快速测定方法的探讨. 粮食与饲料工业, 2010,12(11):39-41.
[9] 康海岐, 常红叶 . 杂交水稻主要亲本材料的垩白性状及其胚乳结构电镜扫描. 中国农学通报, 2007,23(4):180-185.
[10] 赵思明, 熊善柏 . 稻米淀粉的理化特性研究I.不同类型稻米淀粉的理化特性. 中国粮油学报, 2002,17(6):39-43.
[11] Stading M, Hermansson A M, Gatenholm P . Structure,mechanical and barrier properties of amylose and amylopectin films. Carbohydrate Polymers, 1998,36(2-3):217-224.
doi: 10.1016/S0144-8617(98)00025-3
[12] 石海信, 熊拯, 方怀义 . 淀粉物态性质分析中DSC的应用. 广东化工, 2009,36(3):13-15.
[13] Cameron D K, Wang Y J . A better understanding of factors that affect the hardness and stiekiness of long -grain rice. Cereal Chemistry Journal, 2005,82(2):113-119.
doi: 10.1094/CC-82-0113
[14] Saiyavit V, Sujin S, Warunee V , et al. Effect of amylase content on gelatinization,retrogradation and pasting properties of flours from different cultivars of Thai rice. Stareh, 2003,55(9):410-415.
[15] Sung-Ryul K, Jung-Il Y, Sunok M , et al. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. The Plant Journal, 2009,59(4):738-749.
doi: 10.1111/tpj.2009.59.issue-5
[16] Wang Y H, Ren Y L, Liu X , et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. The Plant Journal, 2010,64(9):812-824.
doi: 10.1111/tpj.2010.64.issue-5
[17] David R H, Marisa S O, Li B L , et al. The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell, 2007,19(8):2569-2582.
doi: 10.1105/tpc.107.053538
[18] Wang G F, Wang F, Wang G , et al. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell, 2012,24(8):3447-3462.
doi: 10.1105/tpc.112.101360
[19] Mo Y J, Jeung J U, Shin Y S , et al. Agronomic and genetic analysis of suweon 542,a rice floury mutant line suitable for dry milling. Rice, 2013,6(9):37-48.
doi: 10.1186/1939-8433-6-37 pmid: 4883716
[20] Kong X, Zhu P, Sui Z , et al. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinization temperature combinations. Food Chemistry, 2015,172(4):433-440.
doi: 10.1016/j.foodchem.2014.09.085
[21] Chen P, Wang K, Kuang Q R , et al. Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. International Journal of Biological Macromolecules, 2016,87(6):28-33.
doi: 10.1016/j.ijbiomac.2016.01.119
[22] 蔡金文 . 普通水稻淀粉结构和功能特性研究. 扬州:扬州大学, 2015.
doi: 10.7666/d.Y2909185
[23] Ambigaipalan P . Structure of faba bean,black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Research International, 2011,44(9):2962-2974.
doi: 10.1016/j.foodres.2011.07.006
[24] She K C, Kusano H, Koizumi K , et al. A novel factor floury endosperm 2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010,22(10):3280-3294.
doi: 10.1105/tpc.109.070821
[25] Qiao Y L, Song-I L, Piao R H , et al. Fine mapping and candidate gene analysis of the floury endosperm gene,FLO(a),in rice. Molecules and Cells, 2010,29(2):167-174.
doi: 10.1007/s10059-010-0010-6 pmid: 20016946
[26] Nishio T, Iida S . Mutant having a low content of 16-kDa allergenic protein in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1993,86(2/3):317-321.
doi: 10.1007/BF00222095 pmid: 24193476
[27] Kang H G, Park S, Matsuoka M , et al. White-core endosperm floury endosperm 4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant Journal, 2005,42(6):901-911.
doi: 10.1111/tpj.2005.42.issue-6
[28] Nayeon R, Chul Y, Cheon-Seok P , et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports, 2007,26(10):1083-1095.
doi: 10.1007/s00299-007-0309-8
[29] Peng C, Wang Y H , Floury endosperm 6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014,77(10):917-930.
doi: 10.1111/tpj.2014.77.issue-6
[30] Martha G J, Kay D, Alan M M . Starch synthesis in the cereal endosperm. Plant Biology, 2003,6(3):215-222.
doi: 10.1016/S1369-5266(03)00042-6 pmid: 12753970
[31] Hannah L C, Martha J . The complexities of starch biosynthesis in cereal endosperms. Biotechnology, 2008,19:160-165.
doi: 10.1016/j.copbio.2008.02.013 pmid: 18400487
[32] Umemoto T, Yano M, Satoh H , et al. Mappingof a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theoretical and Applied Genetics, 2002,104:1-8.
doi: 10.1007/s001220200000
[1] Ji Shengdong, Li Peng, Li Jiangwei, Song Liumin, . Analysis of Peroxidase Zymogram and Genetic#br# Effects between Rice Lines and Their#br# Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[2] Ma Mengli, Zheng Yun, Zhou Xiaomei, . Genetic Diversity Analysis of Red Rice from#br# Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Chen Yingying, Wangxu Yiling, Zhu Yuhan, . Hyperspectral Estimation of Nitrogen#br# Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[4] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[5] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[6] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[7] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[8] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[9] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[10] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[11] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[12] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[13] Bo Zeng,Shixian Sun,Jie Wang. Registration of Main Rice Varieties and Its Application in Recent 30 Years in China [J]. Crops, 2018, 34(2): 1-5.
[14] Zhibo Zhou,Yake Yi,Guanghui Chen. Effects of Sowing Amount, Medium and Chemical Treatment on Seedling Quality and Yield of High Quality Late-Rice Variety of Yuzhenxiang [J]. Crops, 2018, 34(2): 129-135.
[15] Ge Qu,Zhengguang Chen,Xue Wang. Identification of Rice Varieties Using NIR Spectroscopy and SIMCA, PLS-DA Methods [J]. Crops, 2018, 34(2): 166-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .