Crops ›› 2018, Vol. 34 ›› Issue (5): 116-120.doi: 10.16035/j.issn.1001-7283.2018.05.018

Previous Articles     Next Articles

Hyperspectral Estimation of Nitrogen Content in Rice Panicle

Chen Yingying,Wangxu Yiling,Zhu Yuhan,Wu Wei,Liu Tao,Sun Chengming   

  1. College of Agronomy, Yangzhou University/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Collaborative Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2018-04-03 Revised:2018-07-18 Online:2018-10-15 Published:2018-10-12
  • Contact: Chengming Sun

Abstract:

Nitrogen is one of the main nutrient elements affecting the growth and development of rice. The growth of rice panicle is closely related to nitrogen nutrition. In this study, the nitrogen content in rice panicle was measured and analyzed by using hyperspectral technology, and the results showed that total nitrogen content of rice panicle and canopy spectral reflectance presented highly significant negative correlation in the near infrared band 760nm to 1 300nm. The correlations between total nitrogen content of rice panicle and spectral characteristic parameters, such as λb, SDr, SDr/SDb and DVI were good, and the estimation models were established based on these relationships. The tested result by independent measured data showed that the quadratic function model y=2.075+0.001x1-2.952x2 based on SDr/SDb and DVI was the best model for estimating total nitrogen content of rice panicle. The above results could provide a new method to diagnose nutrient elements in rice panicle rapidly.

Key words: Rice, Rice panicle, Hyperspectral, Nitrogen content, Estimation model

Fig.1

The spectral curves of different rice varieties in ear/flowering stage"

Fig.2

The correlation between total nitrogen content of rice panicle and canopy spectral reflectance"

Table 1

The correlation between total nitrogen content of rice panicle and spectral characteristic parameters"

光谱指数Spectral index 描述Description 相关系数Correlation coefficient
Db 蓝边覆盖490~530nm内一阶微分光谱最大值 -0.384
λb Db对应波长位置 -0.449*
Dr 红边覆盖680~780nm内一阶微分光谱最大值 -0.282
Rg 波长510~560nm最大波段反射率(即绿峰反射率) -0.262
SDb 蓝边范围内一阶微分波段值的总和 -0.117
SDr 红边范围内一阶微分波段值的总和 -0.430*
SDr/SDb 红边范围内一阶微分波段值的总和/蓝边范围内一阶微分波段值的总和 -0.558**
RVI 比值植被指数 -0.172
NDVI 归一化植被指数 -0.121
DVI 差值植被指数 -0.516*
SAVI 土壤调节植被指数 -0.364

Table 2

The estimation model of total nitrogen content of rice panicle"

光谱指数
Spectral index
拟合方程
Fitted equation
R2
SDr/SDb y=0.981+0.001x 0.311**
DVI y=-1.597-34.688x2+20.486x 0.429**
y=3.648e-3.282x 0.324**
λb y=-75.627+0.148x 0.201*
SDr y=2.156-3.023x 0.185*
y=2.915e-2.945x 0.232*
SDr/SDb, DVI y=2.075+0.001x1-2.952x2 0.505**

Fig.3

The test result of multiple linear regression model"

[1] 王莉雯, 卫亚星 . 植被氮素浓度高光谱遥感反演研究进展. 光谱学与光谱分析, 2013,33(10):2823-2827.
[2] 李永梅, 张立根, 张学俭 . 水稻叶片高光谱响应特征及氮素估算. 江苏农业科学, 2017,45(23):210-213.
[3] 吴静珠, 申舒, 董晶晶 . AOTF高光谱成像探测作物氮素含量方法. 传感器与微系统, 2017,36(11):64-66,69.
[4] 禇旭 . 不同覆盖度条件下水稻叶层氮素营养的高光谱监测研究. 南京:南京农业大学, 2013.
[5] 胡雯君 . 基于冠层反射光谱的水稻氮素营养与生长监测研究. 南昌:江西农业大学, 2014.
[6] 王树文, 郑博元, 张长利 . 氮素胁迫下水稻高光谱特征研究. 农机化研究, 2015(8):162-165.
[7] Stroppiana D, Boschetti M, Brivio P A , et al. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 2009,111(1-2):119-129.
doi: 10.1016/j.fcr.2008.11.004
[8] Ryu C, Suguri M, Umeda M . Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing. Biosystems Engineering, 2009,104(4):465-475.
doi: 10.1016/j.biosystemseng.2009.09.002
[9] 胡军杰, 吴连喜, 王臻 . 高光谱数据在水稻含氮量监测中的应用. 江西科学, 2011,29(6):790-792.
[10] 刘桃菊, 潘星哲, 唐建军 , 等. 不同施氮量条件下水稻高光谱响应特征分析. 江西农业大学学报, 2014(4):699-704.
[11] Yi Q X, Huang J F, Wan F M , et al. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environmental Science & Technology, 2007,41(19):6770-6775.
[12] 李旭青, 刘湘南, 刘美玲 , 等. 水稻冠层氮素含量光谱反演的随机森林算法及区域应用. 遥感学报, 2014,18(4):923-945.
doi: 10.11834/jrs.20142329
[13] 李颖, 薛利红, 马资厚 , 等. 氮磷互作水稻冠层氮素敏感光谱筛选研究. 土壤, 2015,47(1):33-41.
[14] 陈青春, 田永超, 顾凯健 , 等. 基于多种光谱仪的水稻前期植株氮积累量监测. 农业工程学报, 2011,27(1):223-229.
[15] 徐涛 . 基于冠层反射光谱水稻氮素营养诊断模型研究. 南昌:江西农业大学, 2016.
[16] 宋红燕, 胡克林, 彭希 . 基于高光谱技术的覆膜旱作水稻植株氮含量及籽粒产量估算. 中国农业大学学报, 2016,21(8):27-34.
[17] 田永超, 杨杰, 姚霞 , 等. 利用叶片高光谱指数预测水稻群体叶层全氮含量. 作物学报, 2010,36(9):1529-1537.
doi: 10.3724/SP.J.1006.2010.01529
[18] 秦占飞, 常庆瑞, 谢宝妮 , 等. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测. 农业工程学报, 2016,32(23):77-85.
[19] 冯伟, 朱艳, 姚霞 , 等 . 小麦氮素积累动态的高光谱监测. 中国农业科学, 2008,41(7):1937-1946.
[20] 王仁红, 宋晓宇, 李振海 , 等. 基于高光谱的冬小麦氮素营养指数估测. 农业工程学报, 2014,30(19):191-198.
[21] 武改红, 王超, 赵佳佳 , 等. 基于多元统计方法的冬小麦叶面积指数光谱估测. 生态学杂志, 2017,36(9):2665-2670.
[22] 贾学勤, 冯美臣, 杨武德 , 等. 基于多植被指数组合的冬小麦地上干生物量高光谱估测. 生态学杂志, 2018,37(2):424-429.
[23] 陈国庆, 齐文增, 李振 , 等. 不同氮素水平下超高产夏玉米冠层的高光谱特征. 生态学报, 2010,30(22):6035-6043.
[24] 贺婷, 李建东, 刘桂鹏 , 等. 基于高光谱遥感的玉米全氮含量估测模型. 沈阳农业大学学报, 2016,47(3):257-265.
[25] 张国圣, 许童羽, 于丰华 , 等. 基于高光谱的水稻叶片氮素估测与反演模型. 浙江农业学报, 2017,29(5):845-849.
[26] 武威, 陈雯, 陈瑛瑛 , 等. 不同水稻品种主要生育期冠层光谱特征分析. 中国稻米, 2018,24(1):49-51.
[1] Ji Shengdong,Li Peng,Li Jiangwei,Song Liumin,Liu Miaomiao,Gao Kuanglong,Yin Haiqing. Analysis of Peroxidase Zymogram and Genetic Effects between Rice Lines and Their Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[2] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[4] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[5] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[6] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[7] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[8] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[9] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[10] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[11] Bo Zeng,Shixian Sun,Jie Wang. Registration of Main Rice Varieties and Its Application in Recent 30 Years in China [J]. Crops, 2018, 34(2): 1-5.
[12] Zhibo Zhou,Yake Yi,Guanghui Chen. Effects of Sowing Amount, Medium and Chemical Treatment on Seedling Quality and Yield of High Quality Late-Rice Variety of Yuzhenxiang [J]. Crops, 2018, 34(2): 129-135.
[13] Ge Qu,Zhengguang Chen,Xue Wang. Identification of Rice Varieties Using NIR Spectroscopy and SIMCA, PLS-DA Methods [J]. Crops, 2018, 34(2): 166-170.
[14] Jianjun Wang,Yongjun Zeng,Yanhong Yi,Qiming Zhang,Qixing Hu,Xueming Tan,Shan Huang,Qingyin Shang,Yanhua Zeng,Qinghua Shi. The Uniformity of Mechanical-Transplanted Early-Season Rice under Different Seeding Rates and Its Effects on the Formation of Grain Yield [J]. Crops, 2018, 34(2): 141-147.
[15] Suihua Huang,Haowen Luo,Xingge Huang,Pingshan Fan,Leilei Kong,Zhuojun Zhong,Xiangru Tang. Effects of Seeds Dressing Agent on Morphologyand Biochemical Characteristics of Direct-Sowing Rice Seeding [J]. Crops, 2018, 34(2): 171-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .