Crops ›› 2019, Vol. 35 ›› Issue (2): 122-127.doi: 10.16035/j.issn.1001-7283.2019.02.019

;

Previous Articles     Next Articles

Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport

Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai   

  1. College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2018-08-13 Revised:2019-02-18 Online:2019-04-15 Published:2019-04-12
  • Contact: Jianjun Dai

Abstract:

To explore the effects of straw returning on maize yield and potassium accumulation and transport, and then to provide reference for the development of maize stalk returning and rational tillage, a two-year field plot experiment was conducted at the Xiangyang Experimental Base of Northeast Agricultural University. The maize variety Hezhong 11 was used as the experimental material. The method of combining soil tillage with straw returning was used to set 6 treatments: no-tillage+straw returning farmland, no-tillage+no straw returning, rotary tillage+straw returning, rotary tillage+no straw returning, tillage+straw returning, tillage+no straw returning. Maize yield and related factors, potassium accumulation, potassium transport capacity and utilization efficiency were obtained and analyzed. Compared with no-tillage, maize yield, potassium accumulation and utilization efficiency of tillage and rotary tillage were significantly improved. Compared with no straw returning, straw returning treatment significantly increased maize yield, potassium accumulation. Farming methods and straw returning had significant interactions with each indicator. Compared with no-tillage and no straw returning treatments, tillage+straw returning and rotary tillage+straw returning significantly increased yield and potassium accumulation and utilization efficiency. Among these farming models, the yield and potassium accumulation of tillage+straw returning were the highest. In 2016, the yield of tillage+straw returning increased by 32.19% compared with no-tillage and no straw treatment, and increased by 23.30% in 2017. The potassium accumulation of tillage+straw returning in the tasseling and the mature period increased by 19.86% and 14.15% in 2016, respectively, compared with no-tillage and returning to the field, and increased by 40.75% and 20.03% in 2017. There was a significant difference between no-tillage+no straw returning and tillage+straw returning, which indicated that the combination of tillage and straw returning was beneficial to the increase of yield and potassium accumulation and utilization. Therefore, under the conditions of this experiment, tillage based on the straw returning is a suitable farming method.

Key words: Tillage method, Straw returning, Maize yield, Potassium accumulation, Potassium transport

Table 1

Effects of tillage method, straw return and their interaction on maize yield and potassium accumulation and utilization"

因素Factor 产量
Yield
钾积累量
K accumulation
穗粒重
Grain weight
per ear
生物量Biomass 钾转运量
K transport
钾转运率
K transport
rate
钾素干物质
生产效率
K dry matter
production efficiency
钾素子粒
生产效率
K grain production
efficiency
抽雄期
Tasseling
成熟期
Maturity
耕作方式Tillage method <0.01 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.05
秸秆还田Straw return <0.05 <0.01 <0.05 <0.05 <0.05 <0.01 ns ns ns
耕作×秸秆还田
Tillage method×Straw return
<0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05

Table 2

Effects of different treatments on potassium accumulation kg/hm2"

时期
Stage
处理
Treatment
2016年 2017年
免耕N 旋耕R 翻耕T 平均Mean 免耕N 旋耕R 翻耕T 平均Mean
抽雄期Tasseling S 128.99bc 136.03b 145.36a 136.79a 118.56c 131.14b 145.20a 131.64a
K 121.27c 132.20b 140.74ab 131.41b 103.16d 119.23c 132.13b 118.18b
平均Mean 125.13c 134.12b 143.05a - 110.86c 125.18b 138.67a -
成熟期Maturity S 167.77bc 173.35ab 180.99a 174.04a 155.46bc 165.86b 177.17a 166.16a
K 158.55c 166.69bc 170.35b 165.19b 147.61c 158.56bc 163.72b 156.63b
平均Mean 163.16c 170.02b 175.67a - 151.54c 162.21b 170.44a -

Table 3

Effects of different treatments on the potassium transport and use efficiency in maize"

项目
Item
处理
Treatment
2016年 2017年
免耕N 旋耕R 翻耕T 平均Mean 免耕N 旋耕R 翻耕T 平均Mean
钾转运量K transport (kg/hm2) S 25.46c 31.73b 38.67a 31.95a 24.93c 32.38b 37.30a 31.54a
K 21.54d 28.06bc 34.36ab 27.99b 21.65d 26.80bc 28.38bc 25.61b
平均Mean 23.50c 29.90b 36.52a - 23.29c 29.59ab 32.84a -
钾转运率K transport rate (%) S 20.00bc 23.00b 27.00a 23.00a 21.00b 25.00a 25.00a 24.00a
K 18.00c 21.00bc 24.00b 21.00a 21.00b 22.00b 21.00b 22.00a
平均Mean 19.00c 22.00b 26.00a - 21.00b 24.00a 23.00a -
钾素干物质生产效率 S 149.47b 154.50a 154.08a 152.68a 112.21c 131.15a 127.60ab 123.65a
K dry matter production efficiency (g/g) K 149.99b 151.55ab 152.77ab 151.43a 115.95c 116.66c 123.41b 118.67a
平均Mean 149.73b 153.02a 153.42a - 114.08b 123.90a 125.51a -
钾素子粒生产效率 S 80.78c 82.49b 84.77a 82.68a 60.52c 63.28ab 64.10a 62.63a
K grain production efficiency (g/g) K 81.41bc 81.46bc 82.15b 81.67a 59.91c 62.08b 61.27bc 61.09a
平均Mean 81.10b 81.98b 83.46a - 60.22b 62.68a 62.69a -

Table 4

Effects of different treatments on maize yield kg/hm2"

处理
Treatment
2016年 2017年
免耕N 旋耕R 翻耕T 平均Mean 免耕N 旋耕R 翻耕T 平均Mean
S 11 883c 13 552b 14 821a 13 419a 9 256bc 9 408bc 10 927a 9 863a
K 11 212c 12 908b 13 787b 12 635b 8 862c 8 843c 9 937b 9 214b
平均Mean 11 548c 13 230b 14 304a - 9 059b 9 126b 10 432a -

Table 5

Effects of different treatments on maize yield components"

项目
Item
处理
Treatment
2016年 2017年
免耕N 旋耕R 翻耕T 平均Mean 免耕N 旋耕R 翻耕T 平均Mean
穗粒重Spike grain weight (g) S 285.90d 320.10b 345.60a 317.20a 262.70c 266.00c 292.47a 273.72a
K 270.60e 310.20c 329.20b 303.33b 255.80d 253.41d 280.57b 263.26b
平均Mean 278.25c 315.15b 337.40a - 259.25b 259.71b 286.52a -
百粒重100-seed weight (g) S 31.35d 32.72bc 33.96a 32.68a 29.20cd 30.58b 31.97a 30.58a
K 30.66e 32.03c 33.25b 31.98a 28.46d 29.74c 30.96b 29.72a
平均Mean 31.01c 32.38b 33.61a - 28.83c 30.16b 31.47a -
收获指数Harvest index (%) S 52.59a 54.04a 53.46a 53.36a 54.95a 53.93a 49.27a 52.72a
K 54.63a 54.28a 53.77a 54.23a 53.53a 51.66a 51.35a 52.18a
平均Mean 53.61a 54.16a 53.62a - 54.24a 52.80a 50.31a -
生物量Biomass (kg/hm2) S 22 594bc 25 077b 27 722a 25 131a 16 843c 17 444c 22 180a 18 822a
K 20 522c 23 780bc 25 642b 23 315b 16 554c 17 116c 19 351b 17 674b
平均Mean 21 558c 24 429b 26 682a - 16 699b 17 280b 20 766a -
[1] 范继征, 闫飞燕, 石达金 , 等. 不同耕作方式对玉米田土壤物理性质及产量的影响. 玉米科学, 2016,24(1):96-101.
doi: 10.13597/j.cnki.maize.science.20160116
[2] 王静, 杨晓光, 吕硕 , 等. 黑龙江省春玉米产量潜力及产量差的时空分布特征. 中国农业科学, 2012,45(10):1914-1925.
doi: 10.3864/j.issn.0578-1752.2012.10.004
[3] 张延, 梁爱珍, 张晓平 , 等. 不同耕作方式下土壤水分状况对土壤呼吸的初期影响. 环境科学, 2016,37(3):1106-1113.
doi: 10.13227/j.hjkx.2016.03.041
[4] 刘春光, 任英, 刘双利 , 等. 东北春玉米区不同耕作方式对玉米磷素积累分配的影响. 玉米科学, 2017,25(2):117-122.
[5] 宫亮, 孙文涛, 包红静 , 等. 不同耕作方式对土壤水分及玉米生长发育的影响. 玉米科学, 2011,19(3):118-120,125.
[6] 梁金凤, 齐庆振, 贾小红 , 等. 不同耕作方式对土壤性质与玉米生长的影响研究. 生态环境学报, 2010,19(4):945-950.
doi: 10.3969/j.issn.1674-5906.2010.04.036
[7] William T , Pettigrew. Potassium influences on yield and quality production for maize,wheat,soybean and cotton. Physiologia Plantarum, 2008,133(4):670-681.
doi: 10.1111/j.1399-3054.2008.01073.x pmid: 18331406
[8] 王维钰, 乔博, Akhtar K , 等. 免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响. 中国农业科学, 2016,49(11):2136-2152.
doi: 10.3864/j.issn.0578-1752.2016.11.010
[9] 李少昆, 王克如, 冯聚凯 , 等. 玉米秸秆还田与不同耕作方式下影响小麦出苗的因素. 作物学报, 2017(3):463-465,478.
doi: 10.3321/j.issn:0496-3490.2006.03.024
[10] 战秀梅, 彭靖, 李秀龙 , 等. 耕作及秸秆还田方式对春玉米产量及土壤理化性状的影响. 华北农学报, 2014,29(3):204-209.
doi: 10.7668/hbnxb.2014.03.037
[11] 赵亚丽, 薛志伟, 郭海斌 , 等. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014,47(17):3359-3371.
doi: 10.3864/j.issn.0578-1752.2014.17.004
[12] 谭德水, 金继运, 黄绍文 . 长期施钾对东北春玉米产量和土壤钾素状况的影响. 中国农业科学, 2007,40(10):2234-2240.
doi: 10.3321/j.issn:0578-1752.2007.10.016
[13] Singh B, Singh Y, Imas P , et al. Potassium nutrition of the rice-wheat cropping system. Advances in Agronomy, 2003,81:203-259.
doi: 10.1016/S0065-2113(03)81005-2
[14] 李旭, 闫洪奎, 曹敏建 , 等. 不同耕作方式对土壤水分及玉米生长发育的影响. 玉米科学, 2009,17(6):76-78,81.
[15] 于博, 于晓芳, 高聚林 , 等. 玉米秸秆全量深翻还田对高产田土壤结构的影响. 中国生态农业学报, 2018,26(4):584-592.
doi: 10.13930/j.cnki.cjea.170677
[16] 庞荔丹, 孟婷婷, 张宇飞 , 等. 玉米秸秆配氮还田对土壤酶活性、微生物量碳含量及土壤呼吸量的影响. 作物杂志, 2017(1):107-112.
doi: 10.16035/j.issn.1001-7283.2017.01.020
[17] 傅伟, 刘坤平, 陈洪松 , 等. 秸秆还田替代化学钾肥对喀斯特峰丛洼地春玉米产量及土壤钾素的影响. 中国生态农业学报, 2017,25(12):1823-1831.
doi: 10.13930/j.cnki.cjea.170800
[18] 王晓慧, 任英, 曹玉军 , 等. 东北春玉米区不同耕作方式对玉米钾素积累分配的影响. 玉米科学, 2017,25(2):117-122.
[19] 齐文增, 陈晓璐, 刘鹏 , 等. 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013,19(1):26-36.
doi: 10.11674/zwyf.2013.0104
[1] Xiaojun Xiao,Weisheng Lü,Paolan Yu,Wei Zheng,Yazhen Li,Lei Hu,Fuliang Xiao,Shaowen Zhang,Tianbao Huang,Guobin Xiao. Effects of Nitrogen Application Rate on Yield Formation and Nitrogen Use Efficiency of Early Rice under Rape Straw Returning in Triple Cropping [J]. Crops, 2019, 35(2): 103-109.
[2] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[3] Wenchao Zhang,Yufeng Wang,Yifei Zhang,Jingyu Xu,Qiong Wu,Tianyu Chen,Pengfei Zhang,Chen Pang,Chunshuang Tang,Jian Fu,Kejun Yang. Effects of Different Tillage Methods on Changes of Soil Nutrients and Grain Yield of Maize in Semi-Arid Regions of Songnen Plain [J]. Crops, 2017, 33(4): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Ruiqi Ma,Zhen Qi,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Jinfeng Feng,Min Sun,Guangcai Zhao. Regulation Effects of Growth Regulators on Plant Characters, Yield and Quality of Winter Wheat[J]. Crops, 2018, 34(1): 133 -140 .
[5] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[6] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[7] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[8] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[9] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[10] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .