Crops ›› 2019, Vol. 35 ›› Issue (2): 128-135.doi: 10.16035/j.issn.1001-7283.2019.02.020

Previous Articles     Next Articles

A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping

Xixi Dai1,Heming Zhan1,Xinghong Cui2,Yinyue Zhao1,Dandan Shan1,Liang Zhang1,Tiejun Wang1   

  1. 1 Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    2 Huize Agricultural Technology Extension Center, Qujing 654200, Yunnan,China
  • Received:2018-09-17 Revised:2018-12-25 Online:2019-04-15 Published:2019-04-12
  • Contact: Tiejun Wang

Abstract:

Maize and soybean intercropping planting is mainly composed of soybean planting in Yunnan Province. In order to achieve high yield of maize and soybean intercropping system, we must have suitable planting density. The effect of planting density on population grain yield and economic output value was studied with the design of the double saturated D-optimal regression, which was tested at three sites including Songming County (A), Huize County (B) and Ludian County (C), respectively. And a binary quadratic mathematical model was established, in which the planting densities of maize and soybean were independent variables, and population grain yield and economic output value were dependent variables. The results showed that the planting density of maize and soybean on population grain yield and economic output value of intercropping group effect significantly, and the change curve was a convex parabola. The population yield and economic output increased with density under the low level of density. According to model analysis, each test site could reach the highest population grain yield with the optimized combination of maize 64 110 plant/hm 2+ soybean 147 013 plant/hm 2 (A), maize 63 068 plant/hm 2+soybean 147 116 plant/hm 2 (B) and maize 64 059 plant/hm 2+soybean 145 077 plant/hm 2 (C), respectively. Each test site could reach the highest economic output value with the optimized combination of maize 62 909 plant/hm 2+soybean 149 852 plant/hm 2 (A), maize 61 499 plant/hm 2+soybean 151 807 plant/hm 2 (B) and maize 62 762 plant/hm 2+soybean 147 108 plant/hm 2 (C), respectively. According computer simulation, the optimum combination of densities of maize and soybean were 59 251-66 437 plant/hm 2 for maize and 140 075-161 495 plant/hm 2 for soybean (A), 58 927-65 366 plant/hm 2 for maize and 144 159-169 203 plant/hm 2 for soybean (B), 58 821-66 703 plant/hm 2 for maize and 139 315-154 886 plant/hm 2 for soybean (C) in order to obtain population grain yield greater than 12 270kg/hm 2 and economic output value greater 24 000 yuan/hm 2 under the condition of this experiment. A reasonable density collocation can effectively increase population yield and economic output value.

Key words: Maize, Soybean, Intercropping, Planting density coupling, Mathematics model, Optimization scheme

Table 1

Level coding value and field actual value of experiment factors"

处理
Treatment
水平编码值
Level coding value
田间实际值(株/hm2)
Field actual value (plant/hm2)
玉米
Maize
大豆
Soybean
玉米
Maize
大豆
Soybean
T1 -1 -1 44 978 89 955
T2 -1 -1 71 964 89 955
T3 -1 -1 44 978 194 903
T4 -0.1315 -0.1315 56 696 135 528
T5 -0.3944 -1 63 793 194 903
T6 -1 -0.3944 71 964 163 124

Table 2

Statistics of grain yield in three experimental places kg/hm2"

处理
Treatment
嵩明Songming 会泽Huize 鲁甸Ludian
玉米
Maize
大豆
Soybean
群体
Total
玉米
Maize
大豆
Soybean
群体
Total
玉米
Maize
大豆
Soybean
群体
Total
T1 9 499.3a 1 201.3de 10 700.6d 9 778.8c 1 078.1d 10 856.9d 9 960.5d 1 084.5e 11 045.0d
T2 10 655.5b 1 144.7e 11 800.2b 10 984.5ab 888.7e 11 873.2b 10 967.0c 1 011.5f 11 978.5b
T3 9 373.4a 1 338.5bc 10 711.9d 9 713.1c 1 194.0c 10 907.1d 9 835.6e 1 186.4d 11 022.0d
T4 10 651.3b 1 419.2b 12 070.5a 10 991.5ab 1 318.6b 12 310.1a 10 909.6c 1 298.4b 12 207.9a
T5 10 822.6ab 1 293.4cd 12 116.0a 11 121.1a 1 175.9c 12 297.0a 11 108.0b 1 121.4e 12 229.4a
T6 10 669.9b 1 363.2bc 12 033.1ab 10 893.5b 1 240.4c 12 133.9a 10 880.6c 1 236.9c 12 164.9a
SS - 3 582.2a 3 582.2e - 3 568.2a 3 568.2e - 3 647.2a 3 647.2e
MM 11 023.7a - 11 023.7c 11 155.9a - 11 155.9c 11 223.4a - 11 223.4c

Table 3

Statistics of economic output value in all experimental places 元/hm2 yuan/hm2"

处理
Treatment
嵩明Songming 会泽Huize 鲁甸Ludian
玉米
Maize
大豆
Soybean
群体
Total
玉米
Maize
大豆
Soybean
群体
Total
玉米
Maize
大豆
Soybean
群体
Total
T1 15 198.8c 6 607.1de 21 805.9c 15 646.1c 5 929.4d 21 575.5d 15 936.8d 5 964.5e 21 901.3f
T2 17 048.8b 6 296.0e 23 344.7b 17 575.2ab 4 887.8e 22 463.0c 17 547.2c 5 563.2f 23 110.4d
T3 14 997.3c 7 361.9bc 22 359.2c 15 541.0c 6 566.7c 22 107.8c 15 736.9e 6 525.2d 22 262.2e
T4 17 042.2b 7 805.4b 24 847.6a 17 586.4ab 7 252.6b 24 839.0a 17 455.3c 7 140.9b 24 596.2a
T5 17 316.1ab 7 113.6cd 24 429.7a 17 793.7a 6 467.5c 24 261.3b 17 772.7b 6 167.9e 23 940.6c
T6 17 071.8b 7 497.6bc 24 569.4a 17 429.7b 6 822.1c 24 251.8b 17 484.9c 6 802.8c 24 287.7b
SS - 19 699.4a 19 699.4d - 19 625.2a 19 625.2e - 20 059.5a 20 059.5g
MM 17 638.4a - 17 638.4e 17 849.5a - 17 849.5f 17 957.4a - 17 957.4h

Table 4

Regression equations between experiment factors and population grain yield (Y)"

回归方程Regression equation
YA=12163.87+570.1X1+25.9X2-688.03X12-199.59X22+20.25X1X2(P<0.01,R=1.000)
YB=12400.3+519.56X1+36.51X2-769.15X12-229.58X22+11.41X1X2(P<0.01,R=1.000)
YC=12285.96+486.93X1+8.68X2-592.45X12-173.09X22+20.18X1X2(P<0.01,R=1.000)

Table 5

Regression equations between experiment factors and economic output value (Z)"

回归方程 Regression equation
ZA=25022.86+770.11X1+277.36X2-1179.07X12-991.13X22+0.71X1X2(P<0.01,R=1.000)
ZB=25010.89+581.26X1+403.66X2-1363.3X12-1224.68X22+137.51X1X2(P<0.01,R=1.000)
ZC=24736.32+610.88X1+186.78X2-968.45X12-1075.29X22+6.33X1X2(P<0.01,R=1.000)

Fig.1

Analysis of maize planting density on population yield and economic output value"

Fig.2

Analysis of soybean planting density on population yield and economic output value"

Fig.3

Interactive effects of planting density on population grain yield and economic output values in Songming"

Fig.4

Interactive effects of planting densities on population grain yield and economic output values in Huize"

Fig.5

Interactive effects of planting densities on population grain yield and economic output values in Ludian"

Table 6

Related parameters of optimization scheme on three sites"

优化目标
Optimal target value
相关参数
Relevant parameter
嵩明Songming 会泽Huize 鲁甸Ludian
X1 X2 X1 X2 X1 X2
群体产量≥12 270kg/hm2
Population grain yield ≥12 270kg/hm2
优化方案数
Optimization scheme
14 18 19
平均值Mean 0.3270 0.0751 0.2397 0.0584 0.2797 0.1080
标准误Standard error 0.1132 0.1198 0.0962 0.1472 0.0994 0.1478
95%的置信区间
95% confidence interval
0.0824~0.5716 -0.1837~0.3339 0.0368~0.4426 -0.2521~0.3690 0.0709~0.4885 -0.2025~0.4185
种植密度(株/hm2)
Planting density
(plant/hm2)
59 612~66 216 132 855~160 032 58 997~64 475 129 263~161 871 59 457~65 095 131 868~164 470
经济产值≥24 000元/hm2
Economic output value ≥24000 yuan/hm2
优化方案数
Optimization scheme
15 15 12
平均值Mean 0.2701 0.2701 0.2701 0.2701 0.3157 0.0876
标准误Standard error 0.1112 0.1112 0.1112 0.1112 0.1326 0.0674
95%的置信区间
95% confidence interval
0.0316~0.5086 0.0316~0.5086 0.0316~0.5086 0.0316~0.5086 0.0238~0.6077 -0.0607~0.2359
种植密度(株/hm2)
Planting density
(plant/hm2)
58 927~65 366 144 159~169 203 58 927~65 366 144 159~169 203 58 821~66 703 139 315~154 886

Table 7

Frequency analysis of optimal combination with population grain yield≥12 270kg/hm2, economic output value≥24 000 yuan/hm2"

变量
Variable
嵩明Songming 会泽Huize 鲁甸Ludian
X1 X2 X1 X2 X1 X2
次数
Times
频率
Frequency
次数
Times
频率
Frequency
次数
Times
频率
Frequency
次数
Times
频率
Frequency
次数
Times
频率
Frequency
次数
Times
频率
Frequency
-1 0 0 0 0 0 0 0 0 0 0 0 0
-0.1315 3 0.2308 4 0.3077 4 0.2667 4 0.2667 3 0.25 4 0.3333
0 3 0.2308 4 0.3077 4 0.2667 4 0.2667 3 0.25 4 0.3333
0.3944 4 0.3077 4 0.3077 4 0.2667 4 0.2667 3 0.25 4 0.3333
1 3 0.2308 1 0.0769 3 0.2000 3 0.2000 3 0.25 0 0
合计 Total 13 1 13 1 15 1 15 1 12 1 12 1
平均值 Mean 0.3218 0.1578 0.2701 0.2701 0.3157 0.0876
标准误 Standard error 0.1222 0.0936 0.1112 0.1112 0.1326 0.0674
95%置信区间
95% confidence interval
0.0556~0.5879 -0.0462~0.3618 0.0316~0.5086 0.0316~0.5086 0.0238~0.6077 -0.0607~0.2359
种植密度(株/hm2)
Plant density (plant/hm2)
59 251~66 437 140 075~161 495 58 927~65 366 144 159~169 203 58 821~66 703 139 315~154 886
[1] Yang F, Liao D, Wu X . Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017,203:16-23.
doi: 10.1016/j.fcr.2016.12.007
[2] Gou F, Yin W, Hong Y . On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China. Agricultural Systems, 2017,151:96-105.
doi: 10.1016/j.agsy.2016.11.009
[3] Ren Y, Liu J, Wang Z . Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau,China. European Journal of Agronomy, 2016,72:70-79.
doi: 10.1016/j.eja.2015.10.001
[4] Liu X, Rahman T, Song C . Changes in light environment,morphology,growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 2017,200:38-46.
doi: 10.1016/j.fcr.2016.10.003
[5] 方传文 . 玉豆间作条件下大豆生长和生理特性研究. 南京:南京农业大学, 2014.
[6] 周新安, 年海, 杨文钰 , 等. 南方间套作大豆生产发展的现状与对策(Ⅱ). 大豆科技, 2017(4):1-3.
doi: 10.3969/j.issn.1674-3547.2010.05.001
[7] 高阳, 段爱旺, 刘祖贵 , 等. 单作和间作对玉米和大豆群体辐射利用率及产量的影响. 中国生态农业学报, 2009,17(1):7-12.
doi: 10.3724/SP.J.1011.2009.00007
[8] 刘艳昆, 阎旭东, 徐玉鹏 , 等. DTOPSIS法综合评价玉米间作大豆的密度配置和品种选择. 天津农业科学, 2014,20(11):83-87.
doi: 10.3969/j.issn.1006-6500.2014.11.019
[9] 雍太文, 杨文钰, 向达兵 , 等. 玉/豆套作模式下玉米播期与密度对大豆农艺性状及产量的影响. 大豆科学, 2009,28(3):439-444.
doi: 10.11861/j.issn.1000-9841.2009.03.0439
[10] Echarte L, Maggiora A D, Cerrudo D . Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Research, 2011,121(3):423-429.
doi: 10.1016/j.fcr.2011.01.011
[11] 林绍森, 唐永金 . 玉米密度、行距和穴距对间作大豆光合速率的效应分析. 大豆科学, 2007,26(2):149-153.
doi: 10.3969/j.issn.1000-9841.2007.02.006
[12] 谭春燕, 刘作易, 朱星陶 , 等. 不同密度间作大豆的光合生理响应. 贵州农业科学, 2012,40(8):49-52.
doi: 10.3969/j.issn.1001-3601.2012.08.015
[13] 朱元刚, 高凤菊, 曹鹏鹏 , 等. 种植密度对玉米-大豆间作群体产量和经济产值的影响. 应用生态学报, 2015,26(6):1751-1758.
[14] 吴兰 . 密度、带型与播差期对玉米间作大豆产量及品质的影响研究. 贵阳:贵州大学, 2007.
doi: 10.7666/d.y1188291
[15] 吕越 . 玉米/大豆种内与种间作物的资源竞争. 杨凌:西北农林科技大学, 2014.
[16] 焦志勇, 周绍美 . 二次饱和D-最优设计. 山东农业科学, 2017(2):46-49.
[17] 刘伟明 . 二次饱和D-最优设计在甘薯栽培试验中的应用. 安徽农业科学, 2011,39(35):21625-21626.
doi: 10.3969/j.issn.0517-6611.2011.35.024
[18] 肖俊璋, 冯固, 何尚仁 , 等. 应用二次饱和D-最优设计研究肥料效应方程. 土壤通报, 2017(1):27-30.
[19] 林堃, 李绍武 . 应用二次回归饱和D-最优设计研究甘蔗氮、磷、钾肥料效应. 甘蔗糖业, 2017(5):9-15.
[20] 马国胜, 薛吉全, 路海东 , 等. 播种时期与密度对关中灌区夏玉米群体生理指标的影响. 应用生态学报, 2007,18(6):1247-1253.
[21] 曹鲜艳, 徐福利, 王渭玲 , 等. 黄芩产量和黄芩苷含量对氮磷钾肥料的响应. 应用生态学报, 2012,23(8):2171-2177.
[22] 代希茜, 詹和明, 赵银月 , 等. 玉/豆间作模式下幅宽和玉米密度配置优化研究. 西南农业学报, 2018,31(1):39-43.
doi: 10.16213/j.cnki.scjas.2018.1.007
[1] Dongmei Zhang,Xuefang Huang,Chunxia Jiang,Wei Zhang,Xiaojuan Wang,Huatao Liu,Liuying Yan,Enke Liu,Guangqian Zhai. Effects of Micro-Ridge Film Mulching on Soil Water and Temperature and Yield of Dryland Maize in Cold Areas [J]. Crops, 2019, 35(2): 115-121.
[2] Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai. Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport [J]. Crops, 2019, 35(2): 122-127.
[3] Yaxing Shi,Li Xu,Jiuran Zhao,Baishan Lu,Yanli Fan. Waxy Maize Industry Advantages in China and Opportunities in the Development of the Belt and Road [J]. Crops, 2019, 35(2): 15-19.
[4] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[5] Huihui Tang,Yanli Xu,Qingyan Wang,Zhengbo Ma,Guangyan Li,Hui Dong,Zhiqiang Dong. Effects of Foliar Spraying 5-Aminolevulinic Acid on Spring Maize Growth and Yield under Different Planting Densities [J]. Crops, 2019, 35(2): 136-141.
[6] Yifei Zhang,Song Yu,Yufeng Wang,Kejun Yang,Zhuangyuan Guo,Yao Li,Yishan Sun,Wenbao Jia,Yafeng Zhang. Research Progress on Agronomic Practice for Grain Moisture Loss of Maize [J]. Crops, 2019, 35(1): 1-8.
[7] Bo Liu,Ling Wei,Junhong Xiao,Haifeng Yang,Xueyan Duan,Aiping Chen,Ruilan Ren. Study on Improving the Hybrid Seed Setting Rate of Soybean [J]. Crops, 2019, 35(1): 81-84.
[8] Qian Liang,Wenya Liu,Junzhu Ge,Ming Zhao,Haipeng Hou,Yong′an Yang,Decai Xin. Regulation Effects of Narrow-Double Row Precision Sowing with Subsoiling on Yield in Summer Maize [J]. Crops, 2019, 35(1): 111-115.
[9] Yang Zhang,Huilin Yu,Yanbo Wang. Study on Yield and Related Traits of Maize Varieties in Different Ecological Regions of Eastern North China [J]. Crops, 2019, 35(1): 38-43.
[10] Yue Li,Haiyan Li,Jidong Yu,Jie Deng,Yuanfu Gong,Junshu Zhu. Allelopathy of Extracts from Hemp Straw on Soybean [J]. Crops, 2019, 35(1): 175-179.
[11] Haosheng Li,Yan Li,Chenglai Wu,Linmao Zhao,Chunqing Zhang. Effects of DA-6 Treatment at Post-Anthesis on Seed Vigor of Maize Inbred Zheng 58 [J]. Crops, 2019, 35(1): 186-191.
[12] Weitang Li,Yang Li,Hailong Niu,Hongxin Liu,Shujing Mu,Zhongguo He,Yufa Li. Effects of Different Seed Coatings on Emergence Rate under the Mode of Single-Seed Precision Sowing [J]. Crops, 2019, 35(1): 191-196.
[13] Tian Lixin,Yang Ye,Zuo Shiyu,Liu Xuan,Wei Shi,Sun Lei,Li Jing. Effects of Abscisic Acid on Growth and Photosynthetic Characteristics of Maize Seedlings under Low Temperature Stress [J]. Crops, 2018, 34(6): 76-82.
[14] Zhang Shaoyun,Li Xiangling,Liu Pan,Zhang Yue,Zhai Dashuai,Yin Baozhong. Effects of Soil Tillage and Fertilization on Root Microstructure and Yield in Maize [J]. Crops, 2018, 34(6): 144-148.
[15] Ming Bo, Wang Keru, Xie Ruizhi, Hou Peng, Li Shaokun. Researches on Maize Grain Dehydration and Countermeasures for Mechanical Grain Harvesting [J]. Crops, 2018, 34(6): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[3] . [J]. Crops, 2007, 23(6): 35 -37 .
[4] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[5] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .
[6] . [J]. Crops, 1987, 3(1): 23 .
[7] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings[J]. Crops, 2018, 34(4): 95 -101 .
[8] Hongqu Liao,Hongli Chen,Wensi Fan,Yu Chen,Qiujing Han,Jianjun Yu,Ming Ma. Fractal Characteristics of Soil Particles and Their Effects on Physicochemical Properties of Tobacco Leaves in Main Tobacco Growing Areas in Henan[J]. Crops, 2018, 34(1): 118 -125 .
[9] Jiani Zhu,Huiping Dai,Shuhe Wei,Genliang Jia,Dejing Chen,Jinjin Pei,Qing Zhang,Long Qiang. Effects of Applying Zn on the Growth and Zn Accumulation in Soybean at Flowering Stage[J]. Crops, 2018, 34(1): 152 -155 .
[10] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .