Crops ›› 2019, Vol. 35 ›› Issue (3): 172-177.doi: 10.16035/j.issn.1001-7283.2019.03.029

Previous Articles     Next Articles

Molecular Detection and Analysis of Rice Blast Resistance Genes in Main Rice Varieties in Heilongjiang Province

Zhou Yili1,2,Zhang Yaling1,2,Zhao Hongsen1,2,Jin Xuehui1,2   

  1. 1 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2 Heilongjiang Plant Resistance Research Center, Daqing 163319, Heilongjiang, China
  • Received:2019-01-21 Revised:2019-03-31 Online:2019-06-15 Published:2019-06-12
  • Contact: Xuehui Jin

Abstract:

Understanding the resistance genotype of the variety itself is great significant for the rational layout of rice varieties. In order to clarify the distribution of rice blast resistance genes Pi-ta, Pi-b, Pik-m, Pi9, Pii and Pi-d3 in rice varieties in Heilongjiang Province, 34 main varieties were selected, and the functional markers of these 6 anti-blast genes were used to detect the molecular markers. Results showed that the distribution frequency of Pi9 was the highest, followed by Pi-ta and Pik-m, the frequency of Pi-b and Pii resistance genes was lower, and the distribution frequency of Pi-d3 was the lowest. Among the 34 rice materials tested, some varieties contained up to five resistance genes and some contained at least one resistance gene. The species with two resistance genes accounted for the largest proportion. Longjing 40 and Longjing 42 did not contain the gene to be detected.

Key words: Rice, Resistance gene, Molecular detection, Distribution, Rice blast

Table 1

Primer sequence and amplified fragment size for PCR"

目的基因Target gene 引物名称Primer name 引物序列(5′→3′) Primer sequence (5′→3′) 预期片段大小Expected size (bp) 酶Enzyme
Pi-ta Pi-ta F
Pi-ta R
AGCAGGTTATAAGCTAGGCC
CTACCAACAAGTTCATCAAA
1042 -
Pi-ta Npi-ta F
Npi-ta R
AGCAGGTTATAAGCTAGCTAT
CTACCAACAAGTTCATCAAA
1042 -
Pi-b Pi-b F
Pi-b R
GAACAATGCCCAAACTTGAG
GGGTCCACATGTCAGTGAGC
365 -
Pi-b Npi-b F
Npi-b R
TCGGTGCCTCGGTAGTCAGT
GGGAAGCGGATCCTAGGTCT
803 -
Pik-m Pik-m1 F
Pik-m1 R
TGAGCTCAAGGCAAGAGTTGAGGA
TGTTCCAGCAACTCGATGAG
174(抗)/213 -
Pik-m Pik-m2 F
Pik-m2 R
CAGTAGCTGTGTCTCAGAACTATG
AAGGTACCTCTTTTCGGCCAG
290(抗)/332 -
Pi9 Pi9 F
Pi9 R
GCTGTGCTCCAAATGAGGAT
GCGATCTCACATCCTTTGCT
291(抗)/397 -
Pii Pii F
Pii R
TCCAATGCTTCTGAAAGGTAGC
TGGAAACATGAACCCATATCCT
355 PvuⅡ
Pi-d3 Pi-d3 F
Pi-d3 R
TACTACTCATGGAAGCTAGTTCTC
ACGTCACAAATCATTCGCTC
658 BamHⅠ

Fig.1

The results of Pi-ta, Pi-b gene amplification M, DL2 000; Lane 1-K1 (Pi-ta) in A, B; Lane 1-BL1 (Pi-b) in C, D; Lane 2-LTH; Lane 3-Lane 36 are 34 rice varieties selected"

Fig.2

The results of Pik-m, Pi9 gene amplification M, DL2 000; Lane 1-T suyuake (Pik-m) in A, B; lane 1-Oryza minuta (Pi9) in C; Lane 2-LTH; Lane 3-Lane 36 are 34 rice varieties selected"

Fig.3

The results of enzyme digestion of Pii and Pi-d3 M, DL2 000; Lane 1-Fujisaki 5 (Pii) PCR product in A, Lane 1-Digu (Pi-d3) PCR product in B; Lane 2-Fujisaki 5 (Pii) digestion product in A, Lane 2-Valley (Pi-d3) digestion product in B; Lane 3-LTH PCR product; Lane 4-LTH digestion product; Lane 5 to Lane 38 are 34 rice varieties selected"

Table 2

Results of molecular detection of resistant genes for 34 rice varieties"

编号
Numbering
品种Variety 抗性基因Resistance gene
Pi-ta Pi-b Pik-m Pi9 Pii Pi-d3
1 龙粳21 Longjing 21 - - + + - -
2 龙粳26 Longjing 26 - - + - - -
3 龙粳29 Longjing 29 + - - + + -
4 龙粳31 Longjing 31 + - + - - -
5 龙粳40 Longjing 40 - - - - - -
6 龙粳42 Longjing 42 - - - - - -
7 龙粳43 Longjing 43 - + - + + -
8 龙粳45 Longjing 45 + - + + - -
9 龙粳46 Longjing 46 - - + + - -
10 龙粳50 Longjing 50 + - - + - -
11 龙粳52 Longjing 52 - - + + + -
12 龙粳53 Longjing 53 + - + + - -
13 松粳3 Songjing 3 + - - + + -
14 松粳15 Songjing 15 - + + + - -
15 松粳20 Songjing 20 + + + + + -
16 绥粳4 Suijing 4 + - - + - -
17 中龙粳1 Zhonglongjing 1 - + + + - -
18 龙洋1号 Longyang 1 + - + - - -
19 龙洋10 Longyang 10 - + - + - -
20 龙洋16 Longyang 16 + + - - + +
21 北稻3 Beidao 3 + - + + + -
22 北稻4 Beidao 4 + + + + - -
23 垦稻12 Kendao 12 - - + - - -
24 垦稻23 Kendao 23 - + - - - -
25 垦稻26 Kendao 26 + - - + - -
26 垦稻30 Kendao 30 + - - - - -
27 垦稻31 Kendao 31 + - + + - -
28 垦稻32 Kendao 32 + - + - - -
编号
Numbering
品种Variety 抗性基因Resistance gene
Pi-ta Pi-b Pik-m Pi9 Pii Pi-d3
29 龙庆稻3号Longqingdao 3 + - - + - -
30 稻花香2号Daohuaxiang 2 + - - + + -
31 空育131 Kongyu 131 - - + + - -
32 稼禾1号Jiahe 1 + - - + - -
33 三江16 Sanjiang 16 - - - + - -
34 莎莎泥Shashani 16 - - + + - -
LTH - - - - - -
检出频率Detection frequency (%) 55.9 23.5 52.9 70.6 23.5 2.9
[1] 罗曼斯 . 水稻抗稻瘟病候选基因的筛选及功能验证. 南昌:南昌大学, 2017.
[2] 汤智鹏 . 59份水稻种质资源对稻瘟病的抗性及农艺性状评价. 雅安:四川农业大学, 2011.
[3] 李恩宇, 王悦, 陈光辉 . 水稻稻瘟病抗性基因的定位及克隆研究进展. 作物研究, 2014,28(6):754-760.
[4] 蔡金洋 . 分子标记在水稻抗稻瘟病育种中的研究进展. 农业科技通讯, 2018(6):4-5,9.
[5] Bryan G T, Wu K S, Farrall L , et al. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. The Plant Cell, 2000,12(11):2033-2045.
doi: 10.1105/tpc.12.11.2033
[6] Wang Z X, Yano M, Yamanouchi U , et al. The Pib gene for blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 1999,19(1):55-64.
doi: 10.1046/j.1365-313X.1999.00498.x
[7] 刘洋, 徐培洲, 张红宇 , 等. 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008,41(1):9-14.
[8] 张羽 . 区域水稻品种的Pi-km基因的分析. 陕西理工学院学报(自然科学版), 2013,29(4):61-65.
[9] Stefano C, Yulin J . Sequence variation at the rice blast resistance gene Pi-km locus:Implications for the development of allele specific markers. Plant Science, 2010,178(6):523-530.
doi: 10.1016/j.plantsci.2010.02.014
[10] Li L Y, Wang L, Jing J X , et al. The Pikm gene,conferring stable resistance to isolates of Magnaporthe oryzae,was finely mapped in a crossover-cold region on rice chromosome 11. Molecular Breeding, 2007,20(2):179-188.
doi: 10.1007/s11032-007-9118-6
[11] Qu S H, Liu G F, Zhou B . et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006,172(3):1901-1914.
doi: 10.1534/genetics.105.044891
[12] Liu G, Lu G, Zeng L , et al. Two broad-spectrum blast resistance genes,Pi9(t) and Pi2(t),are physically linked on rice chromosome 6. Molecular Genetics and Genomics, 2002,267(4):472-480.
doi: 10.1007/s00438-002-0677-2
[13] 周鹏, 涂诗航, 董瑞霞 , 等. 水稻抗稻瘟病基因分子检测及抗性评价. 福建农业学报, 2016,31(9):962-965.
[14] 朱立宏 . 主要农作物抗病性遗传研究进展. 南京: 江苏科学技术出版社, 1990: 83-93.
[15] 李志 . 9个抗稻瘟病基因自然抗性评价及育种应用研究. 武汉:华中农业大学, 2017.
[16] 兰波, 杨迎青, 陈建 , 等. 江西水稻主栽品种的稻瘟病抗性基因分子标记检测与分析. 分子植物育种, 2019,17(8):2559-2567.
[17] Wang Z, Jia Y, Rutger J N , et al. Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene. Plant Breeding, 2010,126(1):36-42.
[18] Robert F, Concetta A C B, Anna M , et al. Development of DNA markers suitable for marker assisted selection of three,genes conferring resistance to multiple,pathotypes. Crop Science, 2004,44(5):1790-1798.
doi: 10.2135/cropsci2004.1790
[19] Ashikawa I, Hayashi N, Yamane H , et al. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008,180(4):2267-2276.
doi: 10.1534/genetics.108.095034
[20] 张羽, 冯志峰, 张晗 , 等. 陕西省水稻种质资源中Pi9基因的分布状况. 四川农业大学学报, 2013,31(2):115-121.
[21] Takagi H, Uemura A, Yaegashi H , et al. MutMap-Gap:whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii, New Phytologist, 2013,200(1):276-283.
doi: 10.1111/nph.12369
[22] 王亚, 陈献功, 尹海庆 , 等. 河南主要水稻种质资源中抗稻瘟病基因的分子检测. 分子植物育种, 2018,16(10):3203-3212.
[23] 时克, 雷财林, 程治军 , 等. 稻瘟病抗性基因Pita和Pib在我国水稻主栽品种中的分布. 植物遗传资源学报, 2009,10(1):21-26.
[24] 陈峰, 徐建第, 姜明松 , 等. 黄淮区粳稻抗稻瘟病基因Pi-ta、Pi-b、Pi54、Pikm的分子检测. 生物技术进展, 2018,8(1):46-54.
[25] 张银霞, 张敏, 田蕾 , 等. 宁夏水稻品种抗稻瘟病基因Pi-ta、Pi-b和Pi9的检测分析. 江苏农业科学, 2016,44(9):35-39.
[26] 王军, 杨杰, 杨金欢 , 等. Pi-ta、Pi-b基因在江苏粳稻穗颈瘟抗性育种中的价值分析. 华北农学报, 2012,27(6):141-145.
doi: 10.3969/j.issn.1000-7091.2012.06.028
[27] 于连鹏, 张亚玲, 刘殿宇 , 等. 黑龙江省主栽水稻品种对稻瘟病的抗性评价与利用. 江苏农业科学, 2018,46(9):115-118.
[1] Cao Liang,Huang Binglin,Wang Mengxue,Zhang Yuxian. Effects of Row Spacing and Number of Seedling Per Hole on Yield and Quality of Rice in Cold Regions [J]. Crops, 2019, 35(3): 91-98.
[2] Duan Bin,Fang Ling,He Shijie,Li Huilong,Peng Bo,Song Xiaohua,Hu Yang. Effects of the Temperature Change Based on Sowing Date on the Period from Seeding to Heading and the Filling and Ripening Stage of Japonica Rice in Southern Henan Province [J]. Crops, 2019, 35(3): 99-105.
[3] Jiayan Sheng,Weiyang Zhang,Zhiqin Wang,Jianchang Yang. Mechanism and Regulation in Spikelet Degeneration of Rice [J]. Crops, 2019, 35(2): 20-27.
[4] Xiaojun Xiao,Weisheng Lü,Paolan Yu,Wei Zheng,Yazhen Li,Lei Hu,Fuliang Xiao,Shaowen Zhang,Tianbao Huang,Guobin Xiao. Effects of Nitrogen Application Rate on Yield Formation and Nitrogen Use Efficiency of Early Rice under Rape Straw Returning in Triple Cropping [J]. Crops, 2019, 35(2): 103-109.
[5] Xiaoming Yin,Chen Li. Differences in Leaf Photosynthesis and Assimilation of Nitrogen Between Two Rice Cultivars Differing in Nitrogen Use Efficiency [J]. Crops, 2019, 35(1): 90-96.
[6] Haibing Wu,Daohong Liu,Ming Zhong,Youyuan Wang. Effects of Water Management and Potash Application on Grain Yield and Lodging Resistance of Rice [J]. Crops, 2019, 35(1): 127-133.
[7] Shuangqin Tang,Ziming Wu,Xueming Tan,Yongjun Zeng,Qinghua Shi,Xiaohua Pan,Yanhua Zeng. Identification of Cold Tolerance of Direct Seeded Early Rice Varieties at Bud Stage [J]. Crops, 2019, 35(1): 159-167.
[8] Cui Yanni,Zhan Junhui,Yan Pengqi,Ke Wenjing,Song Ningyuan,Zhang Zhongnan,Wang Liuhang,Huang Yan,Zhang Jing,Zhao Quanzhi. Effects of Different Application Proportion of Nitrogen Fertilizer on Grain-Filling Characteristics and Yield of Hybrid Indica Rice in Southern Henan Province [J]. Crops, 2018, 34(6): 103-109.
[9] Zhao Jinxing,Zhou Wei,Zhan Yingce,Li Yongjie,Gao Hongbo,He Songyu,Zhang Yuxian,Zhang Mingcong. Effects of a New Soil Ameliorants on Soil Physical Properties and Yield of Rice in Saline Meadow Soil [J]. Crops, 2018, 34(6): 138-143.
[10] Wang Fuhua,Xue Huazheng,Wang Ya,Wang Shengxuan,Wang Yuetao,Fu Jing,Yang Wenbo,Bai Tao,Li Junzou,Yin Haiqing. Breeding Fragrant Rice Zhengdao19 Using CRISPR/Cas9 Mediated Gene Editing Technology [J]. Crops, 2018, 34(6): 36-42.
[11] Ji Shengdong,Li Peng,Li Jiangwei,Song Liumin,Liu Miaomiao,Gao Kuanglong,Yin Haiqing. Analysis of Peroxidase Zymogram and Genetic Effects between Rice Lines and Their Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[12] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[13] Chen Yingying,Wangxu Yiling,Zhu Yuhan,Wu Wei,Liu Tao,Sun Chengming. Hyperspectral Estimation of Nitrogen Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[14] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[15] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[6] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[7] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[8] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[9] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .