Crops ›› 2019, Vol. 35 ›› Issue (5): 159-165.doi: 10.16035/j.issn.1001-7283.2019.05.026

Previous Articles     Next Articles

Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province

Dong Zhiqiang1,Wang Mengmeng2,Li Hongyi1,Xue Xiaoping1,Pan Zhihua3,Hou Yingyu4,Chen Chen1,Li Nan1,Li Manhua1   

  1. 1 Shandong Provincial Climate Center, Jinan 250031, Shandong, China
    2 Dezhou Meteorological Bureau, Dezhou 253078, Shandong, China
    3 College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
    4 National Meteorological Center, Beijing 100081, China
  • Received:2019-03-08 Revised:2019-06-06 Online:2019-10-15 Published:2019-11-07
  • Contact: Hongyi Li

Abstract:

Summer maize is the most important grain crop in Shandong province. The changes of its growth period and yield play an important role in ensuring regional and even national food security. Different combinations of meteorological factors during different growth periods will affect the development process and yield of summer maize significantly. WOFOST crop model has stronger mechanism, higher quantitative level and great efficiency. It can provide technical support for the objective, quantitative and dynamic assessment of the impacts of meteorological factors on summer maize production. To improve the accuracy of WOFOST model, Shandong province was segregated into five regions, including the northwest region, middle region, southwest region, southeast region and peninsula region. Based on the growth and development data of staple varieties from 2012 to 2014 of 10 summer maize observation stations in Shandong province, we completed the parameters adjustment and verification and applicability assessment of WOFOST model. The results showed that the simulation error of the period of emergence of all observation stations is no more than 4d. Its determination coefficient (R 2) is 0.43-0.99. And its normalized root mean square error (nRMSE) is 0.3%-1.9%. The simulation error of the period of flowering and the period of mature of all observation stations in most years are no more than 5d. Their R 2 of most stations are 0.77-0.99 and 0.51-0.99, respectively. And their nRMSE are 0.4%-2.3% and 0.7%-3.2%, respectively. For the simulation of yield, the R 2 of most stations is 0.68-0.99. Its relative error is 0.8%-16.7% with most stations less than 10%. Its nRMSE is 1.2%-19.5%, and all the stations are less than 30% with most stations less than 10%. All assessment indicators are within the acceptable limits. The WOFOST model can accurately simulate the growth period and yield of summer maize in Shandong province.

Key words: WOFOST model, Applicability, Summer maize, Growth period, Yield

Table 1

The parameters of control crop physiological growth"

参数
Parameter
生物学意义
Biological significance
最小值
Minimum value
最大值
Maximum value
TSUMEM 播种到出苗期积温 0 170
TSUM1 出苗期到开花期积温 150 1 800
TUSM2 开花期到成熟期积温 400 1 550
TBASEM 出苗期最低温度阈值 -10 8
DLO 最优日长 6 18
DLC 临界日长 6 18
TEFFMX 出苗期最大有效温度 18 32

Table 2

The parameters of control single and comprehensive factors affecting potential yield"

参数
Parameter
生物学意义
Biological significance
最小值
Minimum value
最大值
Maximum value
AMAXTB 最大CO2同化速率 1 70
SLATB 比叶面积 0.0007 0.0042
SPAN 35℃时叶片寿命 17 50
RGRLAI 叶面积最大相对增长量 0.007 0.500
LAIEM 出苗期叶面积指数 0.0007 0.3000
TDWI 初始总干物重 0.5 300.0
FLTB 叶分配系数 0 1
FSTB 茎分配系数 0 1
FRTB 根分配系数 0 1
FOTB 穗分配系数 0 1
TMPFTB 平均温度最大CO2
同化速率折减系数
0 1
RDRRTB 根相对死亡速率 0 0.02

Table 3

The parameters of control water-limited affecting yield"

参数
Parameter
生物学意义
Biological significance
最小值
Minimum value
最大值
Maximum value
CFET 作物参考蒸散量校正因子 0.8 1.2
RDMCR 作物成熟最大根深度 50 400
PERDL 水分限制叶片最大相对死亡率 0 0.1
DEPNR 土壤水分耗竭的作物类群数 1 5

Table 4

The simulation verification of emergence period at observation stations"

站点
Station
年份
Year
绝对误差(d)
Absolute error
绝对误差平均值(d)
Average of
absolute error
R2 nRMSE
(%)
高密 2012 3 2.0 0.52 1.2
Gaomi 2013 1
2014 -2
菏泽 2012 0 1.7 0.43 1.4
Heze 2013 1
2014 -4
济阳 2012 3 2.7 0.99 1.7
Jiyang 2013 4
2014 1
胶州 2012 1 1.3 0.99 0.8
Jiaozhou 2013 1
2014 2
莒县 2012 1 0.3 0.96 0.3
Juxian 2013 0
2014 0
莱阳 2012 2 2.0 0.99 1.1
Laiyang 2013 2
2014 2
聊城 2012 0 1.3 0.94 1.1
Liaocheng 2013 -1
2014 -3
泰安 2012 -2 2.7 0.99 1.5
Tai′an 2013 -3
2014 -3
潍坊 2012 4 3.0 0.97 1.9
Weifang 2013 2
2014 3
淄博 2012 0 0.7 0.96 0.5
Zibo 2013 1
2014 1

Table 5

The simulation verification of flowering period at observation stations"

站点
Station
年份
Year
绝对误差(d)
Absolute error
绝对误差平均值(d)
Average absolute error
R2 nRMSE
(%)
高密 2012 5 2.3 0.77 1.4
Gaomi 2013 -1
2014 -1
菏泽 2012 2 1.0 0.98 0.6
Heze 2013 0
2014 -1
济阳 2012 7 4.3 0.13 2.3
Jiyang 2013 5
2014 -1
胶州 2012 2 1.3 0.81 0.7
Jiaozhou 2013 -2
2014 0
莒县 2012 5 4.7 0.99 2.2
Juxian 2013 6
2014 3
莱阳 2012 4 1.3 0.10 1.0
Laiyang 2013 0
2014 0
聊城 2012 1 0.5 - 0.4
Liaocheng 2014 0
2012 -6 2.3 0.92 1.5
泰安 2013 0
Tai′an 2014 -1
2012 3 2.0 0.98 1.0
潍坊 2013 2
Weifang 2014 1
2012 3 3.3 0.17 1.5
淄博 2013 -4
Zibo 2014 3

Table 6

The simulation verification of mature period at observation stations"

站点
Station
年份
Year
绝对误差(d)
Absolute error
绝对误差平均值(d)
Average absolute
error
R2 nRMSE
(%)
高密 2012 5 2.7 0.27 1.2
Gaomi 2013 -3
2014 0
菏泽 2012 1 1.7 0.96 0.7
Heze 2013 -2
2014 -2
济阳 2012 8 4.0 0.98 1.8
Jiyang 2013 -1
2014 -3
胶州 2012 4 5.3 0.57 2.0
Jiaozhou 2013 -7
2014 -5
莒县 2012 7 7.3 0.99 3.2
Juxian 2013 13
2014 -2
莱阳 2012 8 5.0 0.01 2.0
Laiyang 2013 -2
2014 -5
聊城 2012 -2 2.0 - 0.9
Liaocheng 2014 -2
2012 12 6.3 0.88 2.8
泰安 2013 2
Tai′an 2014 -5
2012 9 5.3 0.86 2.3
潍坊 2013 4
Weifang 2014 3
2012 4 5.3 0.51 2.3
淄博 2013 -3
Zibo 2014 9

Table 7

The simulation verification of yield at observation stations"

站点Station R2 相对误差Relative error (%) nRMSE (%)
高密Gaomi 0.02 16.7 19.5
菏泽Heze 0.99 11.3 11.4
济阳Jiyang 0.84 4.5 5.3
胶州Jiaozhou 0.71 5.8 7.6
莒县Juxian 0.83 9.1 16.6
莱阳Laiyang 0.97 7.2 10.1
聊城Liaocheng - 4.0 5.5
泰安Tai′an 0.69 0.8 1.2
潍坊Weifang 0.68 2.7 3.6
淄博Zibo 0.97 1.3 1.5
[1] 周广胜 . 气候变化对中国农业生产影响研究展望. 气象与环境科学, 2015,38(1):80-94.
doi: 10.3969/j.issn.1673-7148.2015.01.012
[2] Dong Z Q, Pan Z H, An P L , et al. A quantitative method for risk assessment of agriculture due to climate change. Theoretical and Applied Climatology, 2018,131(1/2):653-659.
[3] 李克让, 陈育峰 . 中国全球气候变化影响研究方法的进展. 地理研究, 1999,18(2):214-219.
[4] 赵俊芳, 郭建平, 马玉平 , 等. 气候变化背景下我国农业热量资源的变化趋势及适应对策. 应用生态学报, 2010,21(11):2922-2930.
[5] Diepen C A, Wolf J, Keulen H , et al. WOFOST:A simulation model of crop production. Soil Use and Management, 1989,5(1):16-24.
[6] 侯英雨, 何亮, 靳宁 , 等. 中国作物生长模拟监测系统构建及应用. 农业工程学报, 2018,34(21):165-175.
[7] 黄健熙, 贾世灵, 马鸿元 , 等. 基于WOFOST模型的中国主产区冬小麦生长过程动态模拟. 农业工程学报, 2017,33(10):222-228.
[8] Supit I Hooijper A A van Diepen C A , et al. System description of the WOFOST 6.0 crop simulation model implemented in CGMS, Luxembourg Office for Official Publications of the European Commission, 1994.
[9] 陈振林, 张建平, 王春乙 , 等. 应用WOFOST模型模拟低温与干旱对玉米产量的综合影响. 中国农业气象, 2007,28(4):440-442.
[10] 李秀芬, 马树庆, 赵慧颖 , 等. 基于WOFOST模型的内蒙古河套灌区玉米低温冷害评价. 中国农业气象, 2016,37(3):352-360.
[11] 栾庆祖, 叶彩华, 莫志鸿 , 等. 基于WOFOST模型的玉米干旱损失评估:以北京为例. 中国农业气象, 2014,35(3):311-316.
doi: 10.3969/j.issn.1000-6362.2014.03.012
[12] Penning De Vries F W T, Jansen D M, Ten Berge H F M , et al. Simulation of ecophysiological processes of growth in several annual crops. Wageningen: Centre for Agricultural Publishing and Documentation, 1989.
[13] Boogaard H L, Diepen C A, van Roetter R P , et al. User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5. Wageningen:Wageningen University and Research Centre, 1998: 1-40.
[14] 马玉平, 王石立, 张黎 . 针对华北小麦越冬的WOFOST模型改进. 中国农业气象, 2005,26(3):145-149.
[15] 马玉平, 王石立, 张黎 , 等. 基于遥感信息的华北冬小麦区域生长模型及模拟研究. 气象学报, 2005,63(2):204-215.
doi: 10.11676/qxxb2005.020
[16] 张雪芬, 余卫东, 王春乙 , 等. WOFOST模型在冬小麦晚霜冻害评估中的应用. 自然灾害学报, 2006(S1):137-141.
[17] 张雪芬, 余卫东, 王春乙 . 基于作物模型灾损识别的黄淮区域冬小麦晚霜冻风险评估. 高原气象, 2012,31(1):277-284.
[18] 何亮, 侯英雨, 赵刚 , 等. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化. 农业工程学报, 2016,32(2):169-179.
[19] 邬定荣, 欧阳竹, 赵小敏 , 等. 作物生长模型WOFOST在华北平原的适用性研究. 植物生态学报, 2003,27(5):594-602.
[20] 谢文霞, 王光火, 张奇春 . WOFOST模型的发展及应用. 土壤通报, 2006,37(1):154-158.
[21] 孙琳丽, 侯琼, 马玉平 , 等. WOFOST模型在内蒙古河套灌区模拟玉米生长全程的适应性. 生态学杂志, 2016(3):800-807.
[22] 高永刚, 王育光, 殷世平 , 等. 世界粮食研究模型在黑龙江省作物产量预报中的应用. 中国农业气象, 2006,27(1):27-30.
[23] Bussay A, Velde M V D, Fumagalli D , et al. Improving operational maize yield forecasting in Hungary. Agricultural Systems, 2015,141:94-106.
[24] Ma G N, Huang J X, Wu W B , et al. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 2013,58(3/4):634-643.
[25] Saltelli A, Tarantola S, Campolongo F , et a1. Sensitivity analysis in practice:a guide to assessing scientific models. Hoboken:John Wiley and Sons, 2004: 20-78.
[26] Song Y L, Chen D L, Liu Y J , et al. The Influence of Climate Change on Winter Wheat during 2012-2100 under A2 and A1B Scenarios in China. Advances in Climate Change Research, 2012,3(3):138-146.
[27] 马玉平, 王石立, 张黎 , 等. 基于遥感信息的作物模型重新初始化/参数化方法研究初探. 植物生态学报, 2005,29(6):918-926.
doi: 10.3773/j.issn.1005-264x.2005.6.013
[28] Stol W, Rouse D L, kraalingen D W G Van , et al. FSEOPT a FORTRAN program for calibration and uncertainty analysis of simulation models. Netherlands:Wageningen Agricultural University, 1992.
[29] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2017.
[30] 山东省统计局. 国家统计局山东调查总队. 山东统计年鉴. 北京: 中国统计出版社, 2017.
[31] 毛留喜, 吕厚荃 . 国家级农业气象业务技术综述. 气象, 2010,36(7):75-80.
[32] 张琪, 唐婕, 冯一淳 , 等. 基于积温产量模型确定山东夏玉米拔节前后的极端高温阈值. 中国农业气象, 2017,38(12):795-800.
[33] 吴荣华, 庄克章, 刘鹏 , 等. 鲁南地区夏玉米产量对气象因子的响应. 作物杂志, 2018(5):104-109.
[34] 万能涵, 杨晓光, 刘志娟 , 等. 气候变化背景下中国主要作物农业气象灾害时空分布特征(Ⅲ):华北地区夏玉米干旱. 中国农业气象, 2018,39(4):209-219.
[35] 孙新素, 龙致炜, 宋广鹏 , 等. 气候变化对黄淮海地区夏玉米-冬小麦种植模式和产量的影响. 中国农业科学, 2017,50(13):2476-2487.
doi: 10.3864/j.issn.0578-1752.2017.13.007
[36] 梁瀚月, 房世波, 杨武年 , 等. 基于MODIS数据的作物苗情和灾情监测系统及其开发应用. 气象科技进展, 2017,7(1):7-11.
[37] 刘哲, 王雪滢, 刘帝佑 , 等. 基于MODIS数据的黄淮海夏玉米高温风险空间分布. 农业工程学报, 2018,34(9):175-181.
[38] 魏瑞江, 李春强, 姚树然 . 农作物气候适宜度实时判定系统. 气象科技, 2006,34(2):229-232.
[39] 徐玲玲, 吕厚荃, 方利 . 气候变化对黄淮海地区夏玉米气候适宜度的影响. 资源科学, 2014,36(4):782-787.
[40] 李萌, 申双和, 吕厚荃 , 等. 气候变化背景下黄淮海区域热量资源及夏玉米温度适宜度. 大气科学学报, 2016,39(3):391-399.
[41] 杨妍辰 . 干旱对河北固城地区夏玉米产量影响的模拟研究. 南京:南京信息工程大学, 2014.
[42] 江铭诺, 刘朝顺, 高炜 . 华北平原夏玉米潜在产量时空演变及其对气候变化的响应. 中国生态农业学报, 2018,26(6):865-876.
[43] 黄健熙, 黄海, 马鸿元 , 等. 基于MCMC方法的WOFOST模型参数标定与不确定性分析. 农业工程学报, 2018,34(16):113-119.
[44] He B B, Li X, Quan X W , et al. Estimating the aboveground dry biomass of grass by assimilation of retrieved LAI into a cropgrowth model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,8(2):550-561.
[45] 王东伟, 王锦地, 梁顺林 . 作物生长模型同化MODIS 反射率方法提取作物叶面积指数. 中国科学:地球科学, 2010(1):73-83.
[46] Asseng S, Ritchie J T, Smucker A J M , et al. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil, 1998,201(2):265-273.
[47] 武荣盛, 吴瑞芬, 孙小龙 , 等. 不同程度干旱对春玉米生物量和产量影响的模拟. 生态学杂志, 2015,34(9):2482-2488.
[48] 张镇涛, 杨晓光, 高继卿 , 等. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018,51(17):3258-3274.
doi: 10.3864/j.issn.0578-1752.2018.17.003
[49] 陈超, 于强, 王恩利 , 等. 华北平原作物水分生产力区域分异规律模拟. 资源科学, 2009,31(9):1477-1485.
[50] 曹宏鑫, 赵锁劳, 葛道阔 , 等. 作物模型发展探讨. 中国农业科学, 2011,44(17):3520-3528.
doi: 10.3864/j.issn.0578-1752.2011.17.004
[51] 王丽君 . 黄淮海平原夏玉米季干旱、高温的发生特征及其对产量的影响. 北京:中国农业大学, 2018.
[1] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions [J]. Crops, 2019, 35(5): 109-113.
[2] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland [J]. Crops, 2019, 35(5): 120-124.
[3] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2019, 35(5): 135-142.
[4] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[5] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties [J]. Crops, 2019, 35(5): 151-158.
[6] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3 [J]. Crops, 2019, 35(5): 166-172.
[7] Zhao Zhun,Qi Juncang,Li Jian,Guo Yan,Ling Jiangrui,Li Huqing. Influence of Mowing Stages on Hay Yield and Fermentation Quality of Spring Barley [J]. Crops, 2019, 35(5): 180-185.
[8] Ma Yifeng,Liang Qian,Ge Junzhu,Xin Decai. Comparison of Yield Formation Between Winter Wheat Jimai 22 and Spring Wheat Jinqiang 8 [J]. Crops, 2019, 35(5): 192-195.
[9] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[10] Ma Fanfan,Xing Sulin,Gan Manqin,Liu Peishi,Huang Yu,Gan Xiaoyu,Ma Youhua. Effects of Organic Fertilizer Substituting for Chemical Fertilizer on Rice Yield, Soil Fertility and Nitrogen and Phosphorus Loss in Farmland [J]. Crops, 2019, 35(5): 89-96.
[11] Liu Xiaoya,Zhang Lifeng,Zhang Jizong,Shi Wenbin,Zhang Peiyue. Adapt Ability of Brassica napus to Cold Environment in Bashang of North China [J]. Crops, 2019, 35(5): 97-103.
[12] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[13] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[14] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[15] Abudukadier Kuerban,Xia Dong,Zhang Jusong,Cui Jianping,Guo Rensong,Lin Tao. Effects of Drip Irrigation Frequency on Yield and Quality of Chemical Defoliated Cotton [J]. Crops, 2019, 35(4): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[3] Hua Yuhui,Gao Zhiqiang. Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize[J]. Crops, 2019, 35(5): 173 -179 .
[4] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland[J]. Crops, 2019, 35(5): 120 -124 .
[5] Shi Liran,Hao Hongbo,Cui Haiying,Li Mingzhe. Effects of Shading on Photosynthetic Characteristics and Rapid Chlorophyll Fluorescence Kinetic Characteristics of Foxtail Millet[J]. Crops, 2019, 35(5): 125 -128 .
[6] Li Chunxi,Li Sisi,Shao Yun,Ma Shouchen,Liu Qing,Weng Zhengpeng,Li Xiaobo. Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions[J]. Crops, 2019, 35(5): 129 -134 .
[7] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum[J]. Crops, 2019, 35(5): 135 -142 .
[8] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain[J]. Crops, 2019, 35(5): 143 -150 .
[9] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties[J]. Crops, 2019, 35(5): 151 -158 .
[10] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3[J]. Crops, 2019, 35(5): 166 -172 .