Crops ›› 2019, Vol. 35 ›› Issue (6): 33-42.doi: 10.16035/j.issn.1001-7283.2019.06.006

Previous Articles     Next Articles

Identification and Expression Analysis of ASR Family Genes in Setaria italica

Song Jian1,2,Cao Xiaoning3,Wang Haigang3,Chen Ling3,Wang Junjie3,Liu Sichen3,Qiao Zhijun3   

  1. 1College of Biological Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
    2Institute of Industrial Crop, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi, China
    3Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2019-06-05 Revised:2019-10-11 Online:2019-12-15 Published:2019-12-11
  • Contact: Sichen Liu,Zhijun Qiao

Abstract:

ASR protein is a plant-specific protein, which it is one of the most important proteins involved in the drought resistance and salt tolerance of plants. Bioinformatics methods were used to analyze the physicochemical properties of proteins, promoter analysis and phylogenetic tree construction of eight SiASRs family genes in millet. PEG-6000 (10%) and salt (150mmol/L) stresses were arranged for study expression using qRT-PCR. The proteins encoded by the 8 millet SiASRs family genes contained typical ABA/WDS structures, and no signal peptides. Phylogenetic tree showed that the genetic relationship between millet and switchgrass was closer. The evolution among millet ASR protein and tomato ASR protein and soybean ASR protein was relatively far. The results of expression analysis under PEG stress showed that the expression of 8 SiASR was significantly different in different tissues after induction by drought stress. The results of expression analysis under salt stress showed that the responses of 8 ASR genes to salt stress were mainly reflected in the leaves, and the overall expression was up-regulated. The expression of 8 ASR genes in stems was stable; In the roots, ASR1, ASR2, ASR4, ASR5 and ASR6 were involved in salt stress response, and all 5 genes were up-regulated.

Key words: Setaria italica, ASR, Family gene, Bioinformatics, Expression analysis

Fig.1

SiASR family genes chromosome mapping"

Table 1

Members of SiASR family genes and their physicochemical properties"

基因名称
Gene name
基因ID
Gene ID
基因长度(bp)
Length of gene
编码区(bp)Length of CDS 氨基酸数目(aa)
Number of amino acids
基因所在染色体的位置
Location of the genes on the chromosome
等电点
PI
分子量(kDa)
Molecular weight
亲水性指数
Hydrophilic index
SiASR1 Seita.1G187200 876 324 107 scaffold_1:26937730..26938605 reverse 6.76 11.82 -1.190
SiASR2 Seita.5G463600 1 020 522 173 scaffold_5:46902215..46903234 forward 6.26 19.38 -1.277
SiASR3 Seita.5G463700 1 167 318 105 scaffold_5:46906469..46907635 reverse 9.73 11.71 -1.147
SiASR4 Seita.5G463800 590 309 103 scaffold_5:46907284..46907873 forward 9.80 11.50 -1.417
SiASR5 Seita.7G097100 803 306 101 scaffold_7:19994321..19995123 reverse 6.81 11.48 -1.366
SiASR6 Seita.7G097200 1 318 735 244 scaffold_7:19998219..19999536 reverse 5.03 26.00 -1.636
SiASR7 Seita.7G291500 984 417 138 scaffold_7:33499331..33500314 forward 5.88 15.45 -1.298
SiASR8 Seita.8G045700 917 414 137 scaffold_8:3645891..3646807 reverse 6.15 15.42 -1.346

Fig.2

Phylogenetic analysis of ASRs protein"

Fig.3

SiASRs protein phylogenetic tree, SiASRs gene structure and motif distribution of SiASRs protein A, The phylogenetic tree of SiASRs protein; B, SiASRs gene structure map; C, The conserved motifs of SiASRs protein"

Table 2

Motifs of SiASRs proteins"

基序名称
Motif name
基序宽度
Motif width
基序的氨基酸组成
Amino acid composition of the motif
motif1 50 QLGELGAVAAGAYALYEKHKAKKDPEHAHRHKIKEEVAAAAAVGSGGYAF
motif2 14 EDYKKEEKEHKHKE
motif3 11 HEHHEKKEAKK
motif4 18 MAEEKHHHHYFHHHKDED
motif5 6 QQPAGG
motif6 6 SGTDEC
motif7 8 TVAEEVVT
motif8 6 DDCYNG
motif9 8 RVGAGGYC
motif10 6 KHHHLF
motif11 6 HGSRRD
motif12 7 VGRRGGG
motif13 11 RNRAVGDDEYN
motif14 6 KKHHFF
motif15 6 DDEKNK
motif16 6 YGGGYN
motif17 7 YGRGGGD
motif18 6 HRRHGH

Fig.4

Relative expression of SiASR family genes in roots, stems and leaves before stress"

Fig.5

Relative expression of SiASR family genes in roots, stems and leaves after 10% PEG-6000 stress treatment"

Fig.6

Relative expression of SiASR family genes in roots, stems and leaves after salt stress"

[1] 海宝, 双权, 松梅 . 优质饲草料—谷子. 内蒙古草业,1998(4):10.
[2] 刘敬科, 刁现民 . 我国谷子产业现状与加工发展方向. 农业工程技术(农产品加工业),2013(12):15-17.
[3] 李霞 . 当前山西省谷子品种区试、审(认)定与推广概况. 中国种业,2014(7):9-10.
[4] 张书敏, 刘红云, 程金金 , 等. 快速徒手切片法观察谷子和水稻叶片显微结构. 基因组学与应用生物学, 2015,34(7):1527-1530.
[5] 贾冠清, 刁现民 . 谷子[Setaria italica (L.) P. Beauv.]作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017,29(3):292-301.
[6] 张瑞杰, 王喆, 连卜颖 , 等. 谷子ABC转运蛋白基因与抗旱关系的研究. 山西农业大学学报(自然科学版), 2018,38(1):11-15.
[7] 杨晔, 李晶, 顾万荣 , 等. Asr基因家族的研究进展. 作物杂志,2013(3):7-11.
[8] 张丽丽, 李博, 谭燕华 , 等. 玉米转录因子基因ZmASR1的克隆及植物表达载体构建. 江苏农业科学, 2016,44(4):16-22.
[9] Hagit A Z, Scolnik P A, Dudy B Z . Tomato Asr1 mRNA and protein are transiently expressed following salt stress,osmotic stress and treatment with abscisic acid. Plant Science, 1995,110(2):205-213.
doi: 10.1016/0168-9452(95)94515-K
[10] Joo J, Lee Y H, Choi D H , et al. Rice ASR1 has function in abiotic stress tolerance during early growth stages of rice. Journal of the Korean Society for Applied Biological Chemistry, 2013,56(3):349-352.
doi: 10.1007/s13765-013-3060-6
[11] Yang C Y, Chen Y C, Guang Y J , et al. A lily asr protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiology, 2005,139(2):836-846.
doi: 10.1104/pp.105.065458 pmid: 16169963
[12] Wang J T, Gould J H, Padmanabhan V , et al. Analysis and localization of the Water-Deficit Stress-Induced gene (lp3). Journal of Plant Growth Regulation, 2002,21(4):469-478.
doi: 10.1007/s00344-002-0128-7
[13] Jha B, Lal S, Tiwari V , et al. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco. Marine Biotechnology, 2012,14(6):782-792.
doi: 10.1007/s10126-012-9442-7
[14] Feng Z J, Xu Z S, Sun J T , et al. Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. Plant Cell Reports, 2016,35(1):115-128.
doi: 10.1007/s00299-015-1873-y pmid: 26441057
[15] 李建锐 . 谷子SiASR4基因参与植物响应干旱和盐胁迫的功能研究. 北京:中国农业大学, 2018.
[16] Liu Y, Teng X, Yang X , et al. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells. Cell Transplantation, 2010,19(2):133-146.
doi: 10.3727/096368910X492607 pmid: 20350363
[17] 刘晓庆, 陈华涛, 张红梅 , 等. 大豆GmbHLH041基因的生物信息学分析及对镉胁迫的响应. 华北农学报, 2018,33(3):14-18.
[18] Lu Y, Liu L, Wang X , et al. Genome-wide identification and expression analysis of the expansin gene family in tomato. Molecular Genetics and Genomics, 2016,291(2):597-608.
doi: 10.1007/s00438-015-1133-4 pmid: 26499956
[19] 邢国芳, 张莉, 冯万军 , 等. 谷子WRKY 转录因子基因家族分析. 山西农业大学学报(自然科学版), 2016,36(12):837-845.
[20] 孙洋洋 . Boule基因的生物信息学分析. 呼和浩特:内蒙古师范大学, 2014.
[21] Lescot M, DeHais P, Thijs G ,et al. Plant CARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30(1):325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327
[22] 高堃, 华营鹏, 宋海星 , 等. 甘蓝型油菜PIN家族基因的鉴定与生物信息学分析. 作物学报, 2018,44(9):1334-1346.
doi: 10.3724/SP.J.1006.2018.01334
[1] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[2] Lü Liangjie,Chen Xiyong,Zhang Yelun,Liu Qian,Wang Limei,Ma Le,Li Hui. Bioinformatics Identification of GASA Gene Family Expression Profiles in Wheat [J]. Crops, 2018, 34(6): 58-67.
[3] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[4] Ying Zhang,Pengyu Liu,Xue Bai,Yang Yang,Yueying Li. Expression and Bioinformatics Analysis of CsWRKY23 Gene in Cucumber [J]. Crops, 2017, 33(5): 38-42.
[5] Hongmei Yuan,Wendong Guo,Lijuan Zhao,Ying Yu,Jianzhong Wu,Lili Cheng,Dongsheng Zhao,Qinghua Kang,Wengong Huang,Yubo Yao,Xixia Song,Weidong Jiang,Yan Liu,Tingfen Ma,Guangwen Wu,Fengzhi Guan. Cloning and Expression Analysis of the Glycosyltransferase Gene LuUGT72E1 in Flax [J]. Crops, 2016, 32(4): 62-67.
[6] Yu Li,Wenyin Zheng,Chun Feng,Rongfu Wang,Juan Li. Analysis of FeSOD Gene Expression in Normal Wheat Yannong 19 Seedlings under Abiotic Stress [J]. Crops, 2016, 32(4): 75-79.
[7] . [J]. Crops, 2013, 29(3): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .