Crops ›› 2020, Vol. 36 ›› Issue (3): 92-101.doi: 10.16035/j.issn.1001-7283.2020.03.015

Previous Articles     Next Articles

Salt Tolerance Evaluation of Different Rice Varieties at Seedling Stage

Zhang Zhizhen1,2, Li Wen2, Zhou Qixian3, Sun Wei2, Zheng Chongke2(), Xie Xianzhi2()   

  1. 1College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
    2Shandong Rice Research Institute, Jinan 250100, Shandong, China
    3Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2019-11-09 Revised:2020-02-29 Online:2020-06-15 Published:2020-06-10
  • Contact: Chongke Zheng,Xianzhi Xie E-mail:zhengck1983@163.com;xzhxie2010@163.com

Abstract:

Rice is one of important crops for the improvement of saline-alkali soil. Seedling stage of rice is the most sensitive stage to salt stress. Therefore, screening of high salt-tolerance rice varieties at seedling stage is critical for the improvement of cultivation of saline-alkali soil. In this study, the morphological and physiological characteristics of 15 rice varieties under salt stress were analyzed to evaluate their salt-tolerance ability at seedling stage. Morphological analysis showed that the growth was repressed by 150mmol/L NaCl in all test materials, exhibiting reduced plant height, shortened root length and wilting leaves. Among them, the repressive effects of salt stress in Ningjing 44, Nanjing 46, and Yanfeng 47 (control) were relatively weak. Ningjing 44, Nanjing 46 and Yanfeng 47 had the highest survival rates under 200mmol/L NaCl treatment. Salt-tolerance index indicated that Yanfeng 47 ranked the highest, followed by Nanjing 46 and Ningjing 44. Analyses of physiological characteristics related to salt stress responses showed that superoxide dismutase (SOD) activity and contents of malondialdehyde (MDA), proline, and soluble sugar in all examined materials increased under salt stress. However, SOD activity of Nanjing 46 was higher than that in the other materials. Increase of MDA content in Nanjing 46, Yanfeng 47 and Ningjing 44 was relatively less than that in other materials under salt stress. The contents of proline and soluble sugar in Nanjing 46, Ningjing 44, and Yanfeng 47 increased higher than those in other materials examined. Therefore, it can be inferred that Nanjing 46, Yanfeng 47 and Ningjing 44 have strong peroxide scavenging capacity and osmotic adjustment ability, which probably contribute to high salt-tolerance at seedling stage. In conclusion, Nanjing 46 and Ningjing 44 were strong salt-tolerance varieties at seedling stage.

Key words: Rice, Salt-tolerance, Seedling stage, Physiological characteristic

Table 1

Grading standard based on average dead leaf percentage (International Rice Research Institute)"

级别
Grade
平均死叶百分率(%)
Percentage of dead leaves
耐盐/碱性
Salt or alkaline tolerance
1 0.0~20.0 极强
3 20.1~40.0
5 40.1~60.0
7 60.1~80.0
9 80.1~100.0 极弱

Fig.1

Phenotypes of nine rice varieties before and after salt treating (200mmol/L NaCl)"

Fig.2

Effects of salt stress treatment (200mmol/L NaCl) on survival rate of rice varieties Compared with Yanfeng 47 using Student's t-test. "*" indicates P < 0.05 and "**" indicates P < 0.01, the same below"

Fig.3

Effects of salt stress treatment (150mmol/L NaCl) on dead leaf rate of rice varieties"

Fig.4

Effects of 150mmol/L NaCl stress treatment for 6d on different traits of rice"

Table 2

The result of principal component analysis (PCA) on six traits in rice"

项目Item 主成分1
Principal
component 1
主成分2
Principal
component 2
主成分3
Principal
component 3
主成分4
Principal
component 4
主成分5
Principal
component 5
主成分6
Principal
component 6
特征值Eigenvalue 3.12 1.14 0.81 0.64 0.22 0.06
贡献率Variance percent (%) 52.01 19.07 13.53 10.68 3.66 1.05
累积贡献率Cumulative variance percent (%) 52.01 71.08 84.61 95.29 98.95 100.00

Table 3

The weight of each trait in PCA and in salt tolerance index"

性状Trait 主成分1 Principal component 1 主成分2 Principal component 2 权重Weight 权重(归一化)Weight (Normalized)
苗高Seedling height 0.51 0.70 0.56 0.17
根长Root length 0.54 0.66 0.57 0.18
根系鲜重Root fresh weight 0.93 -0.21 0.63 0.19
根系干重Root dry weight 0.79 -0.26 0.51 0.16
茎叶鲜重Shoot fresh weight 0.67 -0.17 0.44 0.14
茎叶干重Shoot dry weight 0.79 -0.26 0.51 0.16

Table 4

The salt tolerance indexes of all 15 varieties"

排序
Rank
品种
Variety
耐盐指数
Salt-tolerance index
排序
Rank
品种
Variety
耐盐指数
Salt-tolerance index
排序
Rank
品种
Variety
耐盐指数
Salt-tolerance index
1 盐丰47 Yanfeng 47 0.93 6 临稻11 Lindao 11 0.75 11 圣稻735 Shengdao 735 0.68
2 南粳46 Nanjing 46 0.85 7 港源8号 Gangyuan 8 0.74 12 香粳9407 Xiangjing 9407 0.67
3 宁粳44 Ningjing 44 0.80 8 宁粳53 Ningjing 53 0.74 13 宁粳51 Ningjing 51 0.66
4 宁粳45 Ningjing 45 0.75 9 新稻18 Xindao 18 0.73 14 淮稻5 Huaidao 5 0.65
5 盐粳44 Yanjing 44 0.75 10 松粳378 Songjing 378 0.68 15 津源45 Jinyuan 45 0.62

Fig.5

Effects of NaCl stress on different physiological indexes of rice varieties "*" and "**" indicate difference at 0.05 and 0.01 level, respectively, the same below"

Fig.6

Effects of NaCl stress on different physiological indexes of relative salt tolerant and relative salt sensitive materials SS-Relative salt sensitive materials, ST-Relative salt resistant materials"

[1] Hasegawa P M, Bressan R A, Zhu J K , et al. Plant cellular and molecular responses to high salinity. Annual Review Plant Physiology and Plant Molecular Biology, 2000,51(51):463-499.
doi: 10.1146/annurev.arplant.51.1.463
[2] 杨佳佳, 姜琦刚, 赵静 , 等. 基于环境减灾卫星高光谱数据的盐碱地等级划分. 农业工程学报, 2011,27(10):118-124.
[3] Lutts S, Kinet J M, Bouharmont J . Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 1995,46(293):1843-1852.
doi: 10.1093/jxb/46.12.1843
[4] 李洪亮 . 盐胁迫对水稻生育时期和农艺性状的影响. 黑龙江农业科学, 2010(11):18-20.
[5] 孙伟, 郑崇珂, 解丽霞 , 等. 水稻对盐胁迫的生理和分子反应研究进展. 山东农业科学, 2016,48(4):148-153.
[6] 李仕勇 . 东营加快生态农业发展助推黄河三角洲新飞跃. 经济导报, 2010(45):40-41.
[7] 祁栋灵, 韩龙植, 张三元 , 等. 水稻耐盐/碱性鉴定评价方法. 植物遗传资源学报, 2005,6(2):226-231.
[8] Yoshida S, Forno D A, Cock J H , et al. Laboratory manual for physiological studies of rice. Los Banos, the Philippines:The International Rice Research Institute, 1976: 61-65.
[9] 潘晓飚, 段敏, 谢留杰 , 等. 水稻籼型不育系萌发期和幼苗期的耐盐性评价. 中国农学通报, 2015,31(30):1-9.
[10] 韩小孩, 张耀辉, 孙福军 , 等. 基于主成分分析的指标权重确定方法. 四川兵工学报, 2012,33(10):124-126.
[11] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006: 221-224.
[12] 张志良, 瞿伟菁 . 植物生理学实验指导. 北京: 高等教育出版社, 2006: 274-277.
[13] 丁灿, 杨清辉, 李富生 , 等. 低温对割手密和斑茅游离脯氨酸含量的影响. 安徽农业科学, 2006,34(5):846-849.
[14] 焦洁 . 考马斯亮蓝G-250染色法测定苜蓿中可溶性蛋白含量. 农业工程技术, 2016(17):33-34.
[15] Lê S, Josse J, Husson F . FactoMineR:An R package for multivariate analysis. Journal of Statistical Software, 2008,25(1):1-18.
[16] 潘世驹, 李红宇, 姜玉伟 , 等. 寒地水稻幼苗期耐盐资源筛选. 南方农业科学, 2015,46(10):1775-1779.
[17] 王奉斌, 张燕红, 袁杰 , 等. 新疆耐盐水稻种质资源的筛选. 新疆农业科学, 2009,46(3):501-505.
[18] 袁杰, 王学强, 张燕红 , 等. 水稻种质资源苗期耐盐性鉴定. 分子植物育种, 2019:1-9. http://kns.cnki.net/kcms/detail/46.1068.S.20191030.1513.012.html.
[19] 金美芳, 何菊芬 . NaCl胁迫对水稻(Oryza sativa)种子萌发和幼苗生长的影响. 福建师大福清分校学报, 2010(2):6-10.
[20] Per T S, Khan N A, Reddy P S , et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance:Phytohormones,mineral nutrients and transgenics. Plant Physiology and Biochemistry, 2017,115:126-140.
doi: 10.1016/j.plaphy.2017.03.018
[21] Nounjan N, Nghia P T, Theerakulpisut P . Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 2012,169(6):596-604.
doi: 10.1016/j.jplph.2012.01.004
[22] Rasool S, Ahmad A, Siddiqi T O , et al. Changes in growth,lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 2013,35(4):1039-1050.
doi: 10.1007/s11738-012-1142-4
[23] Medeiros C D, José R C, Ferreira Neto , et al. Photosynthesis,antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiologiae Plantarum, 2014,36(2):447-459.
doi: 10.1007/s11738-013-1425-4
[24] Xie Z X, Duan L S, Tian X L , et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 2008,165(4):375-384.
doi: 10.1016/j.jplph.2007.06.001
[1] Yang Jing, Gao Liang, Zhu Yi. Research Progress on Rice-Duck Farming [J]. Crops, 2020, 36(3): 1-6.
[2] Tian Yucong, Duan Menjun, Zhu Jie, Feng Xiangzhao, Gao Zhenzhen, Liu Zhangyong, Chen Fu, Jin Tao. Effects of Meteorological Conditions on Formation of High Quality Ratoon Rice [J]. Crops, 2020, 36(3): 125-131.
[3] Lai Rifang, Zheng Axiang, Luo Haowen, Wu Tiaoyan, Zhao Xuze, He Longxin, Wang Lianxiang, Tang Xiangru. Effects of Different Seedling Raising Methods on Seedling Quality and Physiological Characteristics of Machine-Transplanted Aromatic Rice [J]. Crops, 2020, 36(3): 137-141.
[4] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[5] Zhou Zichao, Hou Jianhua, Zhen Zilong, Shi Huimin. Drought-Resistance Identification and Evaluation of 152 Sunflower Recombinant Inbred Lines (RILs) at Seedling Stage [J]. Crops, 2020, 36(3): 47-52.
[6] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[7] Liu Xin,Zhu Rong,Yang Mei,Liu Zhangyong. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[8] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[9] Huang Junxia,Huang Tian,Rao Demin,Zhang Minghao,Meng Fangang,Yan Xiaoyan,Zhang Wei. Effects of Water and Fertilizer Integration and Chemical Control Measures after Flowering on Soybean Yield and Physiological Characteristics [J]. Crops, 2020, 36(2): 82-87.
[10] Ya Zongjie,Lu Shuchang,Hou Kun. Development Status, Problems and ApplicationProspects of Dry Direct Seeding Rice [J]. Crops, 2020, 36(2): 9-15.
[11] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice [J]. Crops, 2020, 36(1): 1-8.
[12] Lü Jun,Jiang Xiuying,Xie Wenxiao,Liu Jun,Jiang Hongbo,Shen Feng,Han Yong. Analysis on Quality Traits of Rice Varieties (Lines) with Different Maturity Stages in Liaoning Province [J]. Crops, 2020, 36(1): 17-21.
[13] Li Bo,Gong Liang,Qu Hang,Jin Dandan,Sun Wentao. Effects of Nitrogen Application Rate on Rice Growth and Yield in Liaohe Delta [J]. Crops, 2020, 36(1): 173-178.
[14] Tian Mengxiang,Gong Yanlong,Zhang Shilong,He Youxun,Lei Yue,Yu Benxun,Yu Li,Li Jiali,Zhang Dashuang,Ye Yongyin. Design and Verification of New Functional Marker of Chilling-Tolerance COLD1 Gene in Rice Seedling Stage [J]. Crops, 2020, 36(1): 55-60.
[15] Chen Tingmu,Sun Zhiguang,Xing Yungao,Fang Zhaowei,Wang Baoxiang,Liu Yan,Xu Dayong. Study on the Method of Determining Digestible Protein Content and Screening of Rice Resources [J]. Crops, 2020, 36(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!