Crops ›› 2022, Vol. 38 ›› Issue (1): 11-19.doi: 10.16035/j.issn.1001-7283.2022.01.002

Previous Articles     Next Articles

Research Advances on the Relationship between Root Characteristics and Nitrogen Uptake and Utilization Efficiency in Rice

Liu Lei(), Song Nana, Qi Xiaoli, Cui Kehui()   

  1. National Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River of Ministry of Agriculture and Rural Affairs/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
  • Received:2021-05-15 Revised:2021-12-30 Online:2022-02-15 Published:2022-02-16
  • Contact: Cui Kehui E-mail:18790091496@163.com;cuikehui@mail.hzau.edu.cn

Abstract:

Plant root system is an actively metabolic and absorptive organ, which is tightly associated with the high-efficient uptake and utilization of nutrients and water. In this article, we examine the relationship of nitrogen uptake and utilization with the root morphological, anatomical, physiological characteristics in rice, and the root characteristics of rice varieties with different nitrogen utilization efficiency. In addition, we also summarize the cultivation measures widely used to increase nitrogen utilization efficiency by improving root growth in rice production. The future research on improving nitrogen uptake and utilization based on root characteristics in rice is also prospected in this paper. The review may provide insights for reducing nitrogen fertilizer application rate, developing optimal management techniques for high resource efficiency, and breeding of nitrogen high-efficiency varieties.

Key words: Rice, Root characteristics, Nitrogen uptake and utilization efficiency, Cultivar breeding, Cultivation management

Table 1

The relationship of nitrogen uptake and utilization efficiency with root morphological characteristics"

根系性状
Root trait
与氮吸收利用效率的关系
Correlations with nitrogen uptake and utilization efficiency
参考文献
Reference
根系分布Root distribution
高产、高氮吸收利用率的水稻品种在10cm以下土层有较大的根干重、根表面积和根体积 [11-12]
总根长、根表面积、根体积
Total root length, root surface area, root volume
氮积累量和氮利用效率高的水稻品种通常具有较大的总根长、根表面积和根体积 [13-20]
侧根Lateral root 侧根数以及侧根长与氮积累量呈正相关关系 [15,21-23]
根毛Root hair 长且密的根毛可提高水稻对氮、磷、钾等养分的吸收效率 [8,24-27]

Table 2

The relationship of nitrogen uptake and utilization efficiency with root anatomical characteristics"

根系性状
Root trait
与氮吸收利用效率的关系
Correlations with nitrogen uptake and utilization efficiency
参考文献
Reference
根直径、根中柱Root diameter, root stele 氮素吸收利用率高的水稻品种具有较多的粗分枝根 [35-42]
根皮层性状Root cortical traits 皮层细胞层数少、皮层细胞大会降低玉米根系的呼吸代谢消耗,提高抗逆性 [43-46]
根通气组织Root aerenchyma
根通气组织的形成可提高玉米低氮下的氮素利用效率,氮素吸收利用率高的水稻品种也具有较多的根通气组织 [47-54]
根木质化和栓质化
Root lignification and suberization
水稻根木质化和栓质化水平在低氮下降低,与氮吸收呈负相关关系
[55-59]

Table 3

The relationship of nitrogen uptake and utilization efficiency with root physiological characteristics"

根系性状
Root trait
与氮吸收利用效率的关系
Correlations with nitrogen uptake and utilization efficiency
参考文献
Reference
NO3-和NH4+转运基因
NO3- and NH4+ transporter genes
OsNRT2.3bOSAMT1;1高表达提高水稻的氮素吸收利用率
[61-62]
氮同化酶活性
Nitrogen-assimilating enzyme activity
氮素吸收利用率高的的水稻品种通常具有较高的根系硝酸还原酶(NR)、亚硝酸还原酶(NiR)、谷氨酰胺合酶(GS)、谷氨酸合酶(GOGAT)和谷氨酸脱氢酶(GDH)活性,根系氮同化能力强 [63]

根呼吸代谢途径Root respiratory pathway 氮素吸收利用率高的品种根系细胞色素氧化酶活性和呼吸代谢途径产能效率高 [64]
根系分泌物Root exudates 氮素吸收利用率高的水稻品种根系分泌物中的有机酸和氨基酸较少 [65-66]
根活力Root vigor 高产、高氮素吸收利用率的水稻品种具有较高的根系活力 [12,18-19]
[1] Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop Research, 2006, 96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004
[2] Cui Z L, Zhang H Y, Chen X P, et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696):363-366.
doi: 10.1038/nature25785
[3] Bowles T M, Atallah S S, Campbell E E, et al. Addressing agricultural nitrogen losses in a changing climate. Nature Sustainability, 2018, 1(8):399-408.
doi: 10.1038/s41893-018-0106-0
[4] Shi X, Hu K, Batchelor W D, et al. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River. Agricultural Water Management, 2020, 228(20):105877.
doi: 10.1016/j.agwat.2019.105877
[5] Ma Z, Guo D, Xu X, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555(7694):94-97.
doi: 10.1038/nature25783
[6] Wu Z, Luo J, Han Y, et al. Low nitrogen enhances nitrogen use efficiency by triggering NO3- uptake and its long-distance translocation. Journal of Agricultural and Food Chemistry, 2019, 67(24):6736-6747.
doi: 10.1021/acs.jafc.9b02491
[7] Wu W, Cheng S. Root genetic research,an opportunity and challenge to rice improvement. Field Crops Research, 2014, 165:111-124.
doi: 10.1016/j.fcr.2014.04.013
[8] Lynch J P. Root phenotypes for improved nutrient capture:an underexploited opportunity for global agriculture. New Phytologist, 2019, 223(2):548-564.
doi: 10.1111/nph.2019.223.issue-2
[9] Bishopp A, Lynch J P. The hidden half of crop yields. Nature Plants, 2015, 1(8):1-2.
[10] 钟楚, 曹小闯, 朱练峰, 等. 稻田干湿交替对水稻氮素利用率的影响与调控研究进展. 农业工程学报, 2016, 32(19):139-147.
[11] 蔡昆争, 骆世明, 段舜山. 水稻根系的空间分布及其与产量的关系. 华南农业大学学报, 2003, 24(3):1-4.
[12] Meng T, Wei H, Li X, et al. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 2018, 228:135-146.
doi: 10.1016/j.fcr.2018.08.024
[13] Wei H, Hu L, Zhu Y, et al. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 2018, 218:88-96.
doi: 10.1016/j.fcr.2018.01.012
[14] Ju C, Buresh R J, Wang Z, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015, 175:47-55.
doi: 10.1016/j.fcr.2015.02.007
[15] 陈晨, 龚海青, 张敬智, 等. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23(2):333-341.
[16] Chen M, Chen G, Di D, et al. Higher nitrogen use efficiency (NUE) in hybrid "super rice" links to improved morphological and physiological traits in seedling roots. Journal of Plant Physiology, 2020, 251:153191.
doi: S0176-1617(20)30081-X pmid: 32585498
[17] 刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35(11):1416-1419.
[18] 刘立军, 王康君, 卞金龙, 等. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40(11):1999-2007.
doi: 10.3724/SP.J.1006.2014.01999
[19] 王强, 李炜, 贺帆, 等. 不同基因型水稻氮效率与生育后期根系性状关系研究. 广东农业科学, 2015, 42(11):23-28.
[20] 白建江, 朴钟泽, 曾威, 等. 不同侧根密度对水稻生长发育及主要农艺性状的影响. 分子植物育种, 2019, 17(5):1624-1630.
[21] Wang X B, Wu P, Hu B, et al. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Botanica Sinica, 2002, 44(6):678-683.
[22] Liu B, Wu J, Yang S, et al. Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany, 2019, 71(15):4405-4414.
doi: 10.1093/jxb/erz536
[23] Postma J A, Dathe A, Lynch J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiology, 2014, 166(2):590-602.
doi: 10.1104/pp.113.233916
[24] Bates T R, Lynch J P. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Journal of Botany, 2000, 87(7):964-970.
pmid: 10898773
[25] Nestler J, Wissuwa M. Superior root hair formation confers root efficiency in some,but not all,rice genotypes upon P deficiency. Frontiers in Plant Science, 2016, 7:1935-1935.
[26] Klinsawang S, Sumranwanich T, Wannaro A, et al. Effects of root hair length on potassium acquisition in rice (Oryza sativa L.). Applied Ecology and Environmental Research, 2018, 16(2):1609-1620.
doi: 10.15666/aeer
[27] 丁仕林, 刘朝雷, 钱前. 水稻根系遗传研究进展. 中国稻米, 2019, 25(5):24-29.
[28] Uga Y, Sugimoto K, Ogawa S, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9):1097-1102.
doi: 10.1038/ng.2725
[29] Thorup-Kristensen K, Halberg N, Nicolaisen M, et al. Digging deeper for agricultural resources,the value of deep rooting. Trends in Plant Science, 2020, 25(4):406-417.
doi: S1360-1385(19)30332-2 pmid: 31964602
[30] Arai-Sanoh Y, Takai T, Yoshinaga S, et al. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Scientific Reports, 2015, 4:5563.
doi: 10.1038/srep05563
[31] 凌启鸿, 陆卫平, 蔡建中, 等. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989, 15(2):123-131.
[32] Lou Q J, Chen L, Mei H W, et al. Root transcriptomic analysis revealing the importance of energy metabolism to the development of deep roots in rice (Oryza sativa L.). Frontiers in Plant Science, 2017, 8:1314.
doi: 10.3389/fpls.2017.01314
[33] Yang X, Li Y, Ren B, et al. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant and Cell Physiology, 2012, 53(3):495-504.
doi: 10.1093/pcp/pcs003
[34] Barberon M, Geldner N. Radial transport of nutrients:the plant root as a polarized epithelium. Plant Physiology, 2014, 166(2):528-537.
doi: 10.1104/pp.114.246124 pmid: 25136061
[35] 顾东祥, 汤亮, 曹卫星, 等. 基于图像分析方法的水稻根系形态特征指标的定量分析. 作物学报, 2010, 36(5):810-817.
[36] 戢林, 李廷轩, 张锡洲, 等. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45(23):4770-4781.
[37] 李娜, 杨志远, 代邹, 等. 不同氮效率水稻根系形态和氮素吸收利用与产量的关系. 中国农业科学, 2017, 50(14):2683-2695.
[38] Kadam N, Yin X, Bindraban P, et al. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water-deficit stress than rice?. Plant Physiology, 2015, 167(4):1389-1401.
doi: 10.1104/pp.114.253328
[39] Bowsher A W, Mason C M, Goolsby E W, et al. Fine root tradeoffs between nitrogen concentration and xylem vessel traits preclude unified whole-plant resource strategies in Helianthus. Ecology and Evolution, 2016, 6(4):1016-1031.
doi: 10.1002/ece3.2016.6.issue-4
[40] Kong D, Wang J, Zeng H, et al. The nutrient absorption-transportation hypothesis:optimizing structural traits in absorptive roots. New Phytologist, 2017, 213(4):1569-1572.
doi: 10.1111/nph.2017.213.issue-4
[41] 张韶昀, 李向岭, 刘盼, 等. 土壤耕作与施肥配合对玉米根系微观结构及产量的影响. 作物杂志, 2018(6):144-148.
[42] York L M, Galindo-Castañeda T, Schussler J R, et al. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. Journal of Experimental Botany, 2015, 66(8):2347-2358.
doi: 10.1093/jxb/erv074
[43] Chimungu J G, Brown K M, Lynch J P. Large root cortical cell size improves drought tolerance in maize. Plant Physiology, 2014, 166(4):2166-2178.
doi: 10.1104/pp.114.250449 pmid: 25293960
[44] Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiology, 2014, 166(4):1943-1955.
doi: 10.1104/pp.114.249037 pmid: 25355868
[45] Galindo-Castañeda T, Brown K M, Lynch J P. Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant Cell and Environment, 2018, 41:1579-1592.
doi: 10.1111/pce.v41.7
[46] Vanhees D J, Loades K W, Glyn B A, et al. Root anatomical traits contribute to deeper rooting of maize under compacted field conditions. Journal of Experimental Botany, 2020, 71(14):4243-4257.
doi: 10.1093/jxb/eraa165 pmid: 32420593
[47] 刘依依, 傅志强, 龙文飞, 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究. 农业现代化研究, 2015, 36(6):1105-1111.
[48] Abiko T, Obara M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Science, 2014, 215-216:76-83.
doi: 10.1016/j.plantsci.2013.10.016
[49] Abiko T, Miyasaka S C. Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions. Journal of Plant Research, 2020, 133:49-56.
doi: 10.1007/s10265-019-01150-6
[50] 陈贵, 陈梅, 朱静娜, 等. 籼粳杂交稻高效吸收氮素的相关机理研究. 土壤, 2020, 52(6):1113-1119.
[51] Lynch J P, Brown K M. Root strategies for phosphorus acquisition. Plant Ecophysiology, 2008, 7:83-116.
[52] Saengwilai P, Nord E A, Chimungu J G, et al. Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology, 2014, 166(2):726-735.
doi: 10.1104/pp.114.241711 pmid: 24891611
[53] Postma J A, Lynch J P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen,phosphorus,and potassium. Plant Physiology, 2011, 156(3):1190-1201.
doi: 10.1104/pp.111.175489
[54] Niones J M, Suralta R R, Inukai Y, et al. Roles of root aerenchyma development and its associated QTL in dry matter production under transient moisture stress in rice. Plant Production Science, 2013, 16(3):205-216.
doi: 10.1626/pps.16.205
[55] Krishnamurthy P, Ranathunge K, Franke R, et al. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 2009, 230(1):119-134.
doi: 10.1007/s00425-009-0930-6 pmid: 19363620
[56] Huang L, Li W C, Tam N F Y C, et al. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). Journal of Environmental Sciences, 2019, 75:296-306.
doi: 10.1016/j.jes.2018.04.005
[57] Melino V J, Plett D C, Bendre P, et al. Nitrogen depletion enhances endodermal suberization without restricting transporter-mediated root NO3- influx. Journal of Plant Physiology, 2021, 257:153334.
doi: 10.1016/j.jplph.2020.153334 pmid: 33373827
[58] Ejiri M, Sawazaki Y, Shiono K. Some accessions of amazonian wild rice (Oryza glumaepatula) constitutively form a barrier to radial oxygen loss along adventitious roots under aerated conditions. Plants, 2020, 9(7):880.
doi: 10.3390/plants9070880
[59] Ranathunge K, Schreiber L, Bi Y M, et al. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta, 2016, 243(1):231-249.
doi: 10.1007/s00425-015-2406-1 pmid: 26384983
[60] Qin L, Walk T C, Han P, et al. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiology, 2019, 179(1):329-347.
doi: 10.1104/pp.18.00716 pmid: 30455286
[61] Ranathunge K, El-Kereamy A, Gidda S, et al. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany, 2014, 65(4):965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570
[62] Wang W, Hu B, Yuan D, et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell, 2018, 30(3):638-651.
doi: 10.1105/tpc.17.00809 pmid: 29475937
[63] 程建峰, 戴廷波, 荆奇, 等. 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007, 44(2):266-272.
[64] 江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002(16):261-264.
[65] 徐国伟, 陆大克, 王贺正, 等. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响. 中国生态农业学报, 2018, 26(4):516-525.
[66] 戢林, 李廷轩, 张锡洲, 等. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征. 植物营养与肥料学报, 2012, 18(5):1046-1055.
[67] Zhang J, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37:676-684.
doi: 10.1038/s41587-019-0104-4
[68] Hu B, Wang W, Ou S, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7):834-838.
doi: 10.1038/ng.3337
[69] Fan X R, Naz M, Fan X, et al. Plant nitrate transporters:from gene function to application. Journal of Experimental Botany, 2017, 68(10):2463-2475.
doi: 10.1093/jxb/erx011
[70] 张振华. 作物硝态氮转运利用与氮素利用效率的关系. 植物营养与肥料学报, 2017, 23(1):217-223.
[71] Han Y L, Song H X, Liao Q, et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 2016, 170(3):1684-1698.
doi: 10.1104/pp.15.01377
[72] Hu R, Qiu D Y, Chen Y, et al. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Frontiers in Plant Science, 2016, 7(48):1529.
[73] Tang W, Ye J, Yao X, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10(1):5279.
doi: 10.1038/s41467-019-13187-1
[74] Okumoto S, Pilot G. Amino acid export in plants:a missing link in nitrogen cycling. Molecular Plant, 2011, 4(3):453-463.
doi: 10.1093/mp/ssr003 pmid: 21324969
[75] Guo H, Tian Z W, Sun S Z, et al. Preanthesis root growth and nitrogen uptake improved wheat grain yield and nitrogen use efficiency. Agronomy Journal, 2019, 111(6):3048-3056.
doi: 10.2134/agronj2019.03.0162
[76] 谢孟林, 李强, 查丽, 等. 低氮胁迫对不同耐低氮性玉米品种幼苗根系形态和生理特征的影响. 中国生态农业学报, 2015, 23(8):946-953.
[77] Kiyomiya S, Nakanishi H, Uchida H, et al. Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiology, 2001, 125(4):1743-1753.
pmid: 11299355
[78] Funayama K, Kojima S, Tabuchikobayashi M, et al. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant and Cell Physiology, 2013, 54(6):934-943.
doi: 10.1093/pcp/pct046
[79] Bao A, Zhao Z, Ding G, et al. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. International Journal of Molecular Sciences, 2015, 16(6):12713-12736.
doi: 10.3390/ijms160612713
[80] Lee S, Marmagne A, Park J, et al. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. The Plant Journal, 2020, 103:7-20.
doi: 10.1111/tpj.v103.1
[81] Gao Z, Wang Y, Chen G, et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 2019, 10(1):5207.
doi: 10.1038/s41467-019-13110-8
[82] Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiology, 1993, 101(2):339-344.
pmid: 12231689
[83] Rakhmankulova Z F, Fedyaev V V, Podashevka O A, et al. Alternative respiration pathways and secondary metabolism in plants with different adaptive strategies under mineral deficiency. Russian Journal of Plant Physiology, 2003, 50(2):206-212.
doi: 10.1023/A:1022973130775
[84] 秦嗣军, 吕德国, 李志霞, 等. 不同形态氮素对东北山樱幼苗根系呼吸代谢及生物量的影响. 园艺学报, 2011, 38(6):1021-1028.
[85] Vives-Peris V, Ollas C D, Gómez-Cadenas A, et al. Root exudates:from plant to rhizosphere and beyond. Plant Cell Reports, 2019, 39(1):3-17.
doi: 10.1007/s00299-019-02447-5
[86] 徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2):140-146.
[87] Xuan W, Beeckman T, Xu G. Plant nitrogen nutrition:sensing and signaling. Current Opinion in Plant Biology, 2017, 39:57-65.
doi: S1369-5266(16)30216-3 pmid: 28614749
[88] Sun L, Lu Y, Yu F, et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist, 2016, 212:646-656.
doi: 10.1111/nph.14057 pmid: 27292630
[89] 曾后清, 朱毅勇, 王火焰, 等. 生物硝化抑制剂—一种控制农田氮素流失的新策略. 土壤学报, 2012, 49(2):382-388.
[90] Chen S M, Waghmode T R, Sun R B, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 2019, 7(4):136.
doi: 10.1186/s40168-019-0750-2
[91] 王孝林, 王二涛. 根际微生物促进水稻氮利用的机制. 植物学报, 2019, 54(3):285-287.
doi: 10.11983/CBB19060
[92] 徐如玉, 左明雪, 袁银龙, 等. 氮肥用量优化对甜玉米氮肥吸收利用率及氮循环微生物功能基因的影响. 南方农业学报, 2020, 51(12):2919-2926.
[93] 程林, 章力干, 张国漪, 等. 氨基酸增值尿素对水稻苗期生长及根际微生物菌群的影响. 植物营养与肥料学报, 2021, 27(1):35-44.
[94] 张绍文, 何巧林, 王海月, 等. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24(1):82-94.
[95] 严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21(1):23-35.
[96] Yang C, Yang L, Yang Y, et al. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 2004, 70(1):67-81.
doi: 10.1016/j.agwat.2004.05.003
[97] Liu L, Chen T T, Wang Z Q, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Research, 2013, 154:226-235.
doi: 10.1016/j.fcr.2013.08.016
[98] 李娜, 杨志远, 代邹, 等. 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017, 31(5):500-512.
[99] 徐国伟, 陆大克, 刘聪杰, 等. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7):137-146.
[100] 李凤霞, 张学艺, 袁海燕, 等. 宁夏引黄灌区水稻节水灌溉生产效应研究. 干旱地区农业研究, 2006, 24(4):46-50.
[101] 李婷婷, 冯钰枫, 朱安, 等. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33(4):293-302.
[102] 王熹, 陶龙兴, 黄效林, 等. 灌溉稻田水稻旱作法研究——水稻的生育与生理特性. 中国农业科学, 2004, 37(9):1274-1281.
[103] Sun Y, Ma J, Sun Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Research, 2012, 127:85-98.
doi: 10.1016/j.fcr.2011.11.015
[104] 河海兵, 杨茹, 廖江, 等. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 作物学报, 2016, 49(2):305-318.
[105] Zhang Y, Liu M, Saiz G, et al. Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Research, 2017, 213:186-193.
doi: 10.1016/j.fcr.2017.08.008
[106] Lynch J P. Root phenes that reduce the metabolic costs of soil exploration:opportunities for 21st century agriculture. Plant, Cell and Environment, 2015, 38(9):12451.
[1] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[2] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[3] Long Ruiping, Zhang Chaozhong, Ge Qinying, Wan Weidong, Wang Qin, Li Guiyong, Xia Qiongmei, Zhu Haiping, Yang Congdang. Analysis of Growth Characteristics and Economic Benefit of Mechanical Transplanted Japonica Rice with Applying Panicle Nitrogen under Rotation of Paddy-Upland [J]. Crops, 2022, 38(1): 124-129.
[4] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[5] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[6] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[7] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[8] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[9] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[10] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[11] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[12] Li Xu, Fu Lidong, Wang Yu, Sui Xin, Ren Hai, Lü Xiaohong, Ma Chang, Du Meng, Mao Ting. Effects of Genetic Interaction between DEP1 and NRT1.1B on Nitrogen Use in Rice [J]. Crops, 2021, 37(6): 22-27.
[13] Yu Julong, Zhang Guo, Zhao Laicheng, Yao Kebing, Luo Guanghua, Fang Jichao, Zhang Jianhua, Jiao Yang, Shu Zhaolin. Control Effects of Different Seed Treatments on the Rice Leaf Folder under Machine-Planting Condition [J]. Crops, 2021, 37(6): 224-229.
[14] Zhang Jun, Deng Aixing, Shang Ziyin, Tang Zhiwei, Yan Shengji, Zhang Weijian. Innovative Rice Cropping for Higher Yield and Less CH4 Emission under Crop Straw Incorporation [J]. Crops, 2021, 37(6): 230-235.
[15] Yu Meixia, Deng Haodong, Tan Jing’ai, Song Guiting, Wu Guangliang, Chen Liping, Liu Ruiqi, Zhou Andong, He Haohua, Bian Jianmin. Detection of QTL for Root Length and Bud Length at Germination Stage in Low Temperature Using CSSLs in Rice (Oryza sativa) [J]. Crops, 2021, 37(6): 36-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!