Crops ›› 2022, Vol. 38 ›› Issue (1): 213-219.doi: 10.16035/j.issn.1001-7283.2022.01.032

Previous Articles     Next Articles

Identification of Salt Tolerance during Germination of Maize Inbred Lines

Duan Yajuan1,2(), Cao Shiliang2, Yu Tao2, Li Wenyue2, Yang Gengbin2, Wang Chengbo2, Liu Baomin2, Liu Changhua1()   

  1. 1College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2021-08-18 Revised:2021-12-08 Online:2022-02-15 Published:2022-02-16
  • Contact: Liu Changhua E-mail:Duanyajuan2902@163.com;liuchanghua70@163.com

Abstract:

In order to optimize the evaluation criteria for salt tolerance of maize inbred lines during germination period, we selected maize varieties with strong salt tolerance, analyzed the genetic mechanism of salt tolerance in maize inbred lines during germination period, which provide important theoretical basis and technical support for salt tolerance breeding in maize germination period. The ten physiological indexes related to salt tolerance of 390 maize inbred lines were measured, and five independent comprehensive indexes (the 7-day germination rate, the 7-day bud dry weight, the 7-day bud fresh weight, the 7-day root dry weight and root length) were determined by principal component analysis. The five comprehensive indexes can be used as the identification indicators of salt tolerance during the germination period of maize. According to the membership function analysis, the comprehensive salt tolerance index of each material was determined, and on this basis, through cluster analysis, the test materials were divided into six grades, according to salt-tolerance during germination period, including 298 high salt-sensitive inbred lines, 49 moderate salt-sensitive inbred lines, 27 salt-sensitive inbred lines, nine salt-tolerant inbred lines, five moderate salt-tolerant inbred lines, and two high salt-tolerant inbred ines.

Key words: Maize, Germination period, Salt tolerance, Principal component analysis, Cluster analysis

Table 1

Statistical analysis of salt tolerance indexes of maize inbred lines"

发芽天数
Germination days (d)
耐盐指标
Salt-tolerance index
平均值
Average
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
方差
Variance
变异系数
Coefficient of variation (%)
4 生根率Rooting rate (%) 31.9100 0 100.0000 22.7300 5.1800 71.25
发芽率Germination rate (%) 8.0500 0 93.3300 13.6900 1.8800 170.04
7 生根率Rooting rate (%) 40.6500 0 100.0000 24.6100 6.0700 60.55
发芽率Germination rate (%) 32.4400 0 100.0000 22.4500 5.0500 69.21
根鲜重Root fresh weight (g) 0.0496 0 0.2337 0.0327 0.0011 0.66
芽鲜重Bud fresh weight (g) 0.0378 0 0.2540 0.0322 0.0010 0.85
根干重Root dry weight (g) 0.0056 0 0.0229 0.0037 0.0000 0.65
芽干重Bud dry weight (g) 0.0051 0 0.0279 0.0038 0.0000 0.75
根长Root length (cm) 3.5497 0 6.3800 1.3364 1.7906 0.38
芽长Bud length (cm) 1.3746 0 3.3400 0.7800 0.6100 0.57

Table 2

Correlation analysis between salt tolerance indexes of maize inbred lines"

发芽天数
Germination
days (d)
耐盐指标
Salt-tolerance index
4d 7d 根长
Root
length
芽长
Bud
length
生根率
Rooting
rate
发芽率
Germination
rate
生根率
Rooting
rate
发芽率
Germination
rate
根鲜重
Root fresh
weight
芽鲜重
Bud fresh
weight
根干重
Root dry
weight
芽干重
Bud dry
weight
4 生根率Rooting rate 1 0.61** 0.93** 0.90** 0.49** 0.46** 0.54** 0.58** 0.41** 0.56**
发芽率Germination rate 1 0.57** 0.64** 0.46** 0.55** 0.47** 0.61** 0.31** 0.58**
7 生根率Rooting rate 1 0.94** 0.52** 0.42** 0.58** 0.56** 0.42** 0.54**
发芽率Germination rate 1 0.55** 0.51** 0.59** 0.64** 0.45** 0.63**
根鲜重Root fresh weight 1 0.65** 0.84** 0.67** 0.59** 0.51**
芽鲜重Bud fresh weight 1 0.56** 0.86** 0.49** 0.73**
根干重Root dry weight 1 0.72** 0.55** 0.52**
芽干重Bud dry weight 1 0.52** 0.76**
根长Root length 1 0.62**
芽长Bud length 1

Table 3

The feature vector and contribution rate of the principal components of each index"

发芽天数
Germination days (d)
耐盐指标
Salt-tolerance index
主成分Principal component
1 2 3 4
4 生根率Rooting rate 0.3273 -0.4496 0.0475 0.0877
发芽率Germination rate 0.2902 -0.1506 -0.4142 -0.2778
7 生根率Rooting rate 0.3276 -0.4562 0.1548 0.0816
发芽率Germination rate 0.3464 -0.3844 0.0268 0.0722
根鲜重Root fresh weight 0.3136 0.2740 0.4463 -0.2577
芽鲜重Bud fresh weight 0.3118 0.3477 -0.3527 -0.1782
根干重Root dry weight 0.3192 0.1837 0.4655 -0.3042
芽干重Bud dry weight 0.3456 0.2287 -0.2179 -0.2221
根长Root length 0.2602 0.3198 0.2442 0.7044
芽长Bud length 0.3110 0.1873 -0.3926 0.4088
特征值Eigenvalue 6.2840 1.2493 0.7666 0.6537
贡献率Contribution rate (%) 62.8403 12.4934 7.6659 6.5368
累计贡献率Cumulative contribution rate (%) 62.8403 75.3337 82.9996 89.5364

Table 4

D values and comprehensive evaluation of some maize inbred lines"

编号Number 材料名称Material name U(X1) U(X2) U(X3) U(X4) DD value 耐盐等级Salt-tolerance grade
290 18GWASPHG356 1.00 0.97 0.94 1.00 0.99 高度耐盐型
186 18GWASPHG228 0.86 1.00 0.74 0.84 0.86 高度耐盐型
160 18GWASPHG196 0.68 0.77 0.75 0.55 0.69 中度耐盐型
161 18GWASPHG198 0.68 0.83 0.33 0.61 0.66 中度耐盐型
336 18GWASPHG416 0.71 0.83 0.15 0.48 0.66 中度耐盐型
248 18GWASPHG305 0.71 0.67 0.22 0.30 0.63 中度耐盐型
171 18GWASPHG208 0.61 0.93 0.31 0.41 0.61 中度耐盐型
261 18GWASPHG319 0.64 0.83 0.11 0.21 0.58 耐盐型
22 18GWASPHG024 0.57 0.63 0.36 0.36 0.55 耐盐型
142 18GWASPHG176 0.57 0.63 0.31 0.17 0.53 耐盐型
80 18GWASPHG098 0.50 0.83 0.32 0.31 0.52 耐盐型
164 18GWASPHG201 0.54 0.70 0.14 0.37 0.52 耐盐型
245 18GWASPHG302 0.50 0.77 0.17 0.39 0.51 耐盐型
313 18GWASPHG390 0.50 0.77 0.26 0.25 0.49 耐盐型
33 18GWASPHG039 0.39 0.77 0.26 0.69 0.46 耐盐型
325 18GWASPHG403 0.46 0.5 0.40 0.41 0.46 耐盐型
121 18GWASPHG149 0.39 0.43 0.59 0.55 0.43 盐敏感型
367 18GWASPHG451 0.43 0.50 0.29 0.33 0.43 盐敏感型
52 18GWASPHG066 0.39 0.63 0.30 0.36 0.41 盐敏感型
70 18GWASPHG086 0.39 0.60 0.24 0.39 0.41 盐敏感型
289 18GWASPHG355 0.36 0.80 0.21 0.29 0.41 盐敏感型
242 18GWASPHG299 0.39 0.53 0.16 0.41 0.40 盐敏感型
255 18GWASPHG312 0.39 0.47 0.21 0.37 0.39 盐敏感型
360 18GWASPHG443 0.32 0.73 0.26 0.41 0.39 盐敏感型
389 18GWASPHG478 0.36 0.5 0.27 0.55 0.39 盐敏感型
98 18GWASPHG119 0.32 0.73 0.21 0.45 0.38 盐敏感型
173 18GWASPHG210 0.29 0.73 0.48 0.45 0.38 盐敏感型
210 18GWASPHG258 0.32 0.77 0.23 0.34 0.38 盐敏感型
213 18GWASPHG261 0.39 0.60 0.24 0.15 0.38 盐敏感型
93 18GWASPHG113 0.32 0.60 0.21 0.50 0.37 盐敏感型
60 18GWASPHG074 0.36 0.57 0.21 0.18 0.36 盐敏感型
73 18GWASPHG090 0.29 0.77 0.14 0.51 0.36 盐敏感型
111 18GWASPHG134 0.32 0.60 0.20 0.28 0.35 盐敏感型
149 18GWASPHG183 0.32 0.63 0.17 0.34 0.35 盐敏感型
345 18GWASPHG428 0.29 0.50 0.51 0.40 0.35 盐敏感型
368 18GWASPHG452 0.29 0.80 0.13 0.36 0.35 盐敏感型
29 18GWASPHG032 0.29 0.57 0.26 0.48 0.34 盐敏感型
88 18GWASPHG107 0.29 0.40 0.45 0.46 0.34 盐敏感型
191 18GWASPHG234 0.25 0.80 0.21 0.36 0.34 盐敏感型
86 18GWASPHG105 0.25 0.43 0.45 0.37 0.32 盐敏感型
94 18GWASPHG114 0.25 0.63 0.25 0.33 0.32 盐敏感型
167 18GWASPHG204 0.25 0.63 0.17 0.49 0.32 盐敏感型
319 18GWASPHG397 0.21 0.60 0.52 0.41 0.32 盐敏感型

Fig.1

Cluster map of salt tolerance of 390 maize inbred lines at germination stage"

[1] Geifus C M, Zörb C, Karl H, et al. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize. Plant Physiology and Biochemistry, 2010, 48(12):993-998.
doi: 10.1016/j.plaphy.2010.09.011
[2] 孙验玲, 徐远超, 李帅, 等. 玉米耐受盐胁迫的调控机理研究进展. 山东农业科学, 2016, 48(11):157-163.
[3] 贾咏霖, 屈忠义, 丁艳宏, 等. 不同灌溉方式下施用生物炭对土壤水盐运移规律及玉米水分利用效率的影响. 灌溉排水学报, 2020, 39(8):44-51.
[4] 刘畅, 孙璐. 盐碱胁迫对玉米苗期生理指标影响的研究进展. 种子科技, 2020, 38(11):18-19.
[5] 陈勋基, 陈果, 常晓春, 等. 玉米幼苗盐胁迫条件下的生理响应机制. 新疆农业科学, 2018, 55(4):627-634.
doi: 10.6048/j.issn.1001-4330.2018.04.005
[6] 李帅, 刘长华, 曹士亮, 等. 30个玉米杂交组合主要农艺性状鉴定与综合评价研究. 黑龙江大学自然科学学报, 2019, 36(6):703-712.
[7] Khan A A, Rao S A, Mcneilly T. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica, 2003, 131(1):81-89.
doi: 10.1023/A:1023054706489
[8] Takehisa H, Shimodate T, Fukuta Y, et al. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Research, 2004, 89(1):85-95.
doi: 10.1016/j.fcr.2004.01.026
[9] 于莹, 张树权, 郭永利, 等. 31份玉米自交系萌发期耐盐碱性综合评价. 东北农业大学学报, 2018, 49(9):9-19.
[10] 邓杰, 孙丽芳, 王霞, 等. 89份玉米自交系萌发期耐盐碱性综合评价. 玉米科学, 2020, 28(4):15-21.
[11] 付艳, 高树仁, 王振华. 玉米种质苗期耐盐性的评价. 玉米科学, 2009, 17(1):36-39,50.
[12] 王秀华, 张寒, 潘香逾, 等. 玉米成株期耐盐性评价与耐盐资源筛选. 分子植物育种, 2020, 18(2):685-692.
[13] 刘春荣, 张国新, 王秀萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28):13-14.
[14] 郑金凤, 米少艳, 婧姣姣, 等. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46(10):1984-1993.
[15] 田治国. 万寿菊属植物耐热性与抗旱性的评价及生长生理特性的研究. 杨凌:西北农林科技大学, 2012.
[16] 高英波, 张慧, 薛艳芳, 等. 不同夏玉米品种耐盐性综合评价与耐盐品种筛选. 玉米科学, 2020, 28(2):33-40.
[17] 常红军, 马灿玲. 盐胁迫对4个玉米品种的萌发及生长的影响. 安徽农业科学, 2006(17):4273-4274.
[18] 郝德荣, 程玉静, 徐辰武, 等. 玉米耐盐种质筛选及群体遗传结构分析. 植物遗传资源学报, 2013, 14(6):1153-1160.
[19] 赵小强, 彭云玲, 李健英, 等. 16份玉米自交系的耐盐性评价. 干旱地区农业研究, 2014, 32(5):40-45,51.
[20] 刘学, 周璇, 曾兴, 等. 玉米芽期和苗期耐盐性鉴定方法的比较分析. 玉米科学, 2015, 23(1):115-121.
[21] 张海艳, 赵海军. 不同品种玉米萌发期和苗期耐盐性综合评价. 玉米科学, 2016, 24(5):61-67.
[22] 谷思玉, 周连仁, 王佳佳. 不同品种玉米萌发期耐盐性的比较. 中国农学通报, 2011, 27(33):34-39.
[1] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[2] Li Wenlue, Chen Changli, Luo Xiahong, Liu Tingting, An Xia, Jin Guanrong, Zhu Guanlin. Genetic Diversity Analysis of Phenotypic Characteristics of Kenaf Resources in Zhejiang Province [J]. Crops, 2022, 38(1): 50-55.
[3] Zhou Delong, Meng Lingcong, Zheng Shubo, Wang Nan, Li Mu, Wang Xinqi, Lu Shi, Wang Min, Liu Wenguo, Lu Ming. Establishing of a Fast and Efficient Testing Method of Transgenic Maize [J]. Crops, 2022, 38(1): 65-69.
[4] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[5] Zhang Yanru, Yang Zihe, Yang Rong, Han Jian, Jiao Jinlong, Zhao Li, Wu Yuanqi. Evaluation of the Adaptability of Tropical Maize Germplasm Population to Control Parental Mixed Selections [J]. Crops, 2021, 37(5): 14-19.
[6] Cao Liru, Wang Guorui, Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua, Lu Xiaomin. Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize [J]. Crops, 2021, 37(5): 28-34.
[7] Liu Xin, Yang Fang, Deng Junbo, Wang Aiai, He Nian, Chen Yan. Phenotypic Analysis and Comprehensive Evaluation of Soybean Strains in Jianghan Plain of China [J]. Crops, 2021, 37(5): 57-63.
[8] Qi Xiaolei, Li Xingfeng, Lü Guangde, Wang Ruixia, Wang Jun, Sun Xianyin, Sun Yingying, Chen Yongjun, Qian Zhaoguo, Wu Ke. Genetic Analysis of Taishan/Taikemai Serial Wheat Based on SNP Molecular Markers [J]. Crops, 2021, 37(5): 64-71.
[9] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[10] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[11] Tang Hongqin, Li Zhongyi, Dong Wenbin, Wei Caihui, He Tieguang, Meng Yancheng, Tang Hailing, Mo Yongcheng. Effects of Different Intercropping Modes of Green Manure Replacing Chemical Fertilizer on Cassava (Manihot esculenta Crantz) Traits and Yield [J]. Crops, 2021, 37(4): 184-190.
[12] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[13] Du Xiaoyu, Li Nannan, Zou Shaokui, Wang Lina, Lü Yongjun, Zhang Qian, Li Shuncheng, Yang Guangyu, Han Yulin. Comprehensive Analysis of Main Traits of Newly Bred Wheat Varieties (Lines) in Southern Huang-Huai Region [J]. Crops, 2021, 37(4): 38-45.
[14] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[15] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!