Crops ›› 2022, Vol. 38 ›› Issue (3): 73-79.doi: 10.16035/j.issn.1001-7283.2022.03.010

Previous Articles     Next Articles

Molecular Cloning and Bioinformatics Analyzing of Laccase in Fagopyrum tataricum

Yang Xiaolin1(), Duan Ying1, Cai Suyun1, He Runli1(), Yin Guifang2, Wang Yanqing2, Lu Wenjie2, Sun Daowang2, Wang Lihua2()   

  1. 1College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, Shanxi, China
    2Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Laboratory of Agricultural Biotechnology/Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming 650221, Yunnan, China
  • Received:2021-07-07 Revised:2021-11-08 Online:2022-06-15 Published:2022-06-20
  • Contact: He Runli,Wang Lihua E-mail:15733605992@163.com;herunli666@163.com;wanglihua70@hotmail.com

Abstract:

In this experiment, to study the gene function of laccase protein in the development of tartary buckwheat, two laccase genes from tartary buckwheat were cloned using RT-PCR technology. Bioinformatics techniques were used to predict the domain, secondary and tertiary protein structure, and to perform the protein homology alignment and phylogenetic evolutionary tree analysis. The results showed that the open reading frame of the FtLAC-1 gene sequence was 1695bp, coding for 564 amino acids, and the open reading frame of the FtLAC-2 gene sequence was 1707bp, coding for 568 amino acids. The predicted molecular weights of FtLAC-1 and FtLAC-2 proteins were 61.41 and 62.47kDa and their theoretical isoelectric points were 9.45 and 9.41, respectively. They were hydrophilic proteins. The sequence similarity of the two genes was low and the amino acid sequence homology was not high. qRT-PCR analysis of its differential expression in different tissues and organs of tartary buckwheat. This study provided a theoretical basis for further exploring the functions of the FtLAC-1 and FtLAC-2 genes in thin buckwheat husk formation.

Key words: Fagopyrum tataricum, Laccase, Gene cloning, Bioinformatics, Expression analysis

Table 1

Sequences of primers and their usage"

引物名称
Primer name
引物序列(5'-3')
Primer sequence(5'-3')
用途
Usage
LAC-1-1F AGTCACTCCACTACAGCAACACACG 基因克隆
LAC-1-1468R CGGATGGCTTTCAGGTGCTA
LAC-1-1285F CAACATAAGTGGGGTATTCACGGAT
LAC-1-2131R TTCAGAGAAGGATTTCAAACAACAA
LAC-2-47F TTCAAACCACACACAAAACCCTA
LAC-2-1437R CACCACCTTCGTACCGTTCATC
LAC-2-1067F CACTCCCAGCCATCAACGAC
LAC-2-2101R CGGAGCAAGAGGGAAGAAACA
LAC-1-F GGAAGGGGTCCTAACGAGTCT 实时荧光
定量PCR
LAC-1-R CCTATTGTCTCCTTTGCTGGTT
LAC-2-F TGGTGGAACAACGATACGG
LAC-2-R CGGGAAAGCCATTGAAAGT
H3-F AAGAAGTCCCACAGATACCGC
H3-R AGCCTCCTGAAGAGCTAGCAC

Fig.1

Amplification of the LAC-1 and LAC-2 genes from tartary buckwheat M: SM0331 DNA marker; 1, 2: H-LAC-1; 3, 4: B-LAC-1; 5, 6: H-LAC-2; 7, 8: B-LAC-2; H: Yunqiao 1 (thick shell); B: Millet buckwheat (thin shell)"

Fig.2

Conserved domains of gene-encoded proteins of FtLAC-1 and FtLAC-2"

Fig.3

Analysis of hydrophobicity of laccase proteins"

Fig.4

The prediction of tertiary structural model of laccase proteins"

Fig.5

Amino acid sequence alignment of different plant laccase proteins"

Fig.6

Phylogenetic tree analysis of laccase proteins from different species"

Fig.7

Relative expression of FtLAC-1 and FtLAC-2 genes in various organs “*”means the difference is significant at 0.05 level,“**”means the difference is extremely significant at 0.01 level"

[1] 陈庆富. 荞麦属植物科学. 北京: 科学出版社, 2012.
[2] 陈曦. 苦荞功能成分研究文献综述. 食品安全导刊, 2018, 33(11):162.
[3] 朱云辉, 郭元新. 我国苦荞资源的开发利用研究进展. 食品工业科技, 2014, 35(24):360-365.
[4] 张余, 黄小燕, 昌敏, 等. 苦荞营养保健成分及其食品开发研究进展与展望. 粮食与油脂, 2019, 32(8):12-14.
[5] 陈庆富, 陈其饺, 石桃雄, 等. 苦荞厚果壳性状的遗传及其与产量因素的相关性研究. 作物杂志, 2015(2):27-31,2.
[6] 张盛春, 鞠常亮, 王小菁. 拟南芥漆酶基因AtLAC4参与生长及非生物胁迫响应. 植物学报, 2012, 47(4):357-365.
doi: 10.3724/SP.J.1259.2012.00357
[7] Turlapati P V, Kim K W, Davin L B, et al. The laccase multigene family in Arabidopsis thaliana:towards addressing the mystery of their gene function(s). Planta, 2011, 233(3):439-470.
doi: 10.1007/s00425-010-1298-3
[8] Schuetz M, Benske A, Smith R A, et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiology, 2014, 166(2):798-807.
doi: 10.1104/pp.114.245597
[9] 冯鹤翔, 涂轶. 木质素生物合成的研究. 青岛大学学报(自然科学版), 2018, 31(1):46-54.
[10] Vanholme R, Morreel K, Darrah C, et al. Metabolic engineering of novel lignin in biomass crops. New Phytologist, 2012, 196(4):978-1000.
doi: 10.1111/j.1469-8137.2012.04337.x pmid: 23035778
[11] Ranocha P, Chabannes M, Chamayou S, et al. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Journal of Plant Physiology, 2002, 129(1):145-155.
[12] 吴朝昕. 薄壳苦荞果壳结构及其发育中的转录组学分析. 贵阳:贵州师范大学, 2020.
[13] 罗冬梅, 赵亚文, 荆永琳, 等. 牛大力漆酶基因CsLAC17的克隆与载体构建. 分子植物育种, 2019, 17(6):1906-1912.
[14] 艾嘉, 刘坤, 张蕾, 等. 细菌漆酶的生物信息学分析. 基因组学与应用生物学, 2019, 38(3):1070-1078.
[15] 乔永刚, 贾孟君, 陈亮, 等. 忍冬ICE1基因的cDNA克隆及表达分析. 植物生理学报, 2019, 55(11):1647-1654.
[16] 邹春虹. 苦荞营养保健成分及其食品开发分析. 食品界, 2020(8):121.
[17] 李利超, 孙化雨, 娄永峰, 等. 毛竹漆酶基因PeLAC的克隆与表达分析. 植物科学学报, 2017, 35(2):252-259.
[18] 陈亮. 丹参漆酶基因的克隆表达和功能研究. 福州:福建中医药大学, 2017.
[19] 高敏霞, 冯新, 赖瑞联, 等. 米良1号猕猴桃漆酶基因的克隆与表达分析. 农业生物技术学报, 2018, 26(1):64-76.
[20] 刘月, 杨健, 王龙, 等. 木质素合成途径及其调控梨褐皮性状研究进展. 果树学报, 2018, 35(增1):17-25.
[21] 汤崴, 王洁, 张文颖, 等. 木质素在果树果核退化的作用. 分子植物育种, 2018, 16(11):3752-3762.
[22] 王文然, 王晨, 解振强, 等. VvmiR397a及其靶基因VvLACs在葡萄果实发育中的作用分析. 园艺学报, 2018, 45(8):1441-1455.
[23] 帅良, 赵昱清, 廖玲燕, 等. 龙眼漆酶基因(DlLac)的克隆及表达分析. 食品工业科技, 2017, 38(13):95-100.
[24] 薛辉. 软籽石榴种子硬度的影响因素及转录组分析. 北京: 中国农业科学院, 2016.
[25] 谢小波, 黄云, 田胜平, 等. 软籽石榴种子硬度发育与种皮细胞壁显微结构的关系研究. 园艺学报, 2017, 44(6):1174-1180.
[1] Zhou Fei. Bioinformatics and Expression Analysis of HaLACS7 Gene in Sunflower [J]. Crops, 2022, 38(3): 104-108.
[2] Lu Ping, Kang Qingfang, Zhao Mengyao, Zhang Fengjie, Wu Qiangqiang, Ma Fangfang, Wang Yushen, Han Yuanhuai, Wang Xingchun, Li Xueyin. Identification and Functional Analysis of miR169 Family and Its Target Genes in Setaria italica [J]. Crops, 2022, 38(2): 54-63.
[3] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[4] Song Kunfeng, Hao Fengsheng, Yao Xin, Wang Jing, Liu Weiqun. Cloning and Functional Analysis of Tobacco Nt14-3-3-like C Gene [J]. Crops, 2021, 37(5): 6-13.
[5] Liu Xiaoli, Han Litao, Wei Nan, Shen Fei, Cai Yilin. Cloning, Molecular Characteristics Analysis and Genetic Transformation of Arabidopsis thaliana of ZmGS5 Gene in Maize [J]. Crops, 2021, 37(1): 16-25.
[6] Wang Zhilong, Xue Yinghong, Hao Yueru, Liu Baoling, Yuan Lixia, Xue Jin'ai, Li Runzhi. Identification and Expression Analysis of Oil-Related Transcription actor CsLEC2 Gene Family in Camelina sativa (L.) Crantz [J]. Crops, 2020, 36(5): 23-32.
[7] Xu Yuanyuan, Zhao Peng, Hong Quanchun, Zhu Xiaoqin, Pei Dongli. Isolation and Expression Analysis of Transcription Factor Gene TaMYB70 in Wheat [J]. Crops, 2020, 36(4): 84-90.
[8] Zhao Xunchao,Xu Jingyu,Gai Shengnan,Wei Yulei,Xu Xiaoxuan,Ding Dong,Liu Meng,Zhang Jinjie,Shao Wenjing. Identification of Stearyl -ACP Desaturase Gene (SbSAD) Family and Their Expression Analysis at Different Developmental Stages in Sorghum [J]. Crops, 2020, 36(2): 20-27.
[9] Song Jian,Cao Xiaoning,Wang Haigang,Chen Ling,Wang Junjie,Liu Sichen,Qiao Zhijun. Identification and Expression Analysis of ASR Family Genes in Setaria italica [J]. Crops, 2019, 35(6): 33-42.
[10] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[11] Lü Liangjie,Chen Xiyong,Zhang Yelun,Liu Qian,Wang Limei,Ma Le,Li Hui. Bioinformatics Identification of GASA Gene Family Expression Profiles in Wheat [J]. Crops, 2018, 34(6): 58-67.
[12] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[13] Ying Zhang,Pengyu Liu,Xue Bai,Yang Yang,Yueying Li. Expression and Bioinformatics Analysis of CsWRKY23 Gene in Cucumber [J]. Crops, 2017, 33(5): 38-42.
[14] Yu Li,Wenyin Zheng,Chun Feng,Rongfu Wang,Juan Li. Analysis of FeSOD Gene Expression in Normal Wheat Yannong 19 Seedlings under Abiotic Stress [J]. Crops, 2016, 32(4): 75-79.
[15] Hongmei Yuan,Wendong Guo,Lijuan Zhao,Ying Yu,Jianzhong Wu,Lili Cheng,Dongsheng Zhao,Qinghua Kang,Wengong Huang,Yubo Yao,Xixia Song,Weidong Jiang,Yan Liu,Tingfen Ma,Guangwen Wu,Fengzhi Guan. Cloning and Expression Analysis of the Glycosyltransferase Gene LuUGT72E1 in Flax [J]. Crops, 2016, 32(4): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!