Crops ›› 2022, Vol. 38 ›› Issue (4): 107-114.doi: 10.16035/j.issn.1001-7283.2022.04.015

Previous Articles     Next Articles

Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content

Chen Shiyong1(), Wang Rui2, Chen Zhiqing2, Zhang Haipeng2, Wang Juanjuan1, Shan Yuhua1, Yang Yanju1()   

  1. 1College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture and Rural Affairs/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-09-04 Revised:2021-11-21 Online:2022-08-15 Published:2022-08-22
  • Contact: Yang Yanju E-mail:1817198747@qq.com;006468@yzu.edu.cn

Abstract:

In this study, pot experiments were carried out in 2018 and 2019 to examine the effects of nano-Zn and ion-Zn application (at dosages of 0, 7.5, 30 and 60kg/ha) on rice yield, yield components, and grain zinc accumulation. Nanjing 9108 rice cultivar with good taste quality was used as material. The influence of nano-Zn and ion-Zn on rice yield and its components and grain zinc accumulation was studied, which provides a scientific basis for the rational selection and application of rice zinc fertilizer. The results showed that both nano-Zn and ion-Zn application significantly increased rice yield by 1.3% and 11.9% compared with no zinc treatment, and rice grain yield increased with the increase of zinc application. Under the same condition of zinc application amount, the yield increase effect of nano-Zn was significantly higher than that of ion-zinc treatment due to the higher effective panicles number, spikelets per panicle and seed-setting rate of nano-Zn treatment. Compared with ion-Zn treatment, nano-Zn treatment significantly improved rice dry matter accumulation, leaf area index, net leaf photosynthetic rate, leaf stomatal conductance, intercellular CO2 concentration, and transpiration rate, thus promoting the formation of rice yield. Both nano-Zn and ion-Zn application significantly increased the grain zinc content and zinc accumulation compared with the control treatment. The nano-Zn treatment grain zinc content and zinc accumulation were increased by 4.5%-10.3% and 6.2%-15.4% compared with the ion-zinc treatment, respectively. In conclusion, for promoting rice grain yield and its components, compared with ion-Zn, nano-Zn had obvious advantages, and the application of nano-Zn could effectively improve the zinc content of grain, which could be used as an effective measure to improve the nutritional quality of rice.

Key words: Nano-zinc, Ion-zinc, Rice, Yield formation, Zinc content

Table 1

Effects of nano-zinc and ion-zinc on the yield and its components of rice"

年份
Year
处理
Treatment
有效穗数
Effective panicles number (×104/hm2)
穗粒数
Spikelets per panicle
千粒重
1000-grain weight (g)
结实率
Seed-setting rate (%)
实收产量
Harvest yield (t/hm2)
2018 CK 355.05±1.37c 105.96±0.34d 27.13±0.13a 91.17±0.44a 9.36±0.01c
T1 363.85±1.37bc 110.27±1.56c 27.21±0.13a 91.14±0.15a 9.48±0.01bc
T2 366.97±1.24abc 111.14±2.17c 27.17±0.05a 91.19±0.31a 9.61±0.00bc
T3 368.48±0.15abc 111.73±0.24c 27.22±0.02a 91.23±0.27a 9.73±0.02abc
T4 371.51±1.49ab 116.97±0.24b 27.40±0.12a 91.28±0.32a 9.59±0.01bc
T5 374.48±2.05ab 120.64±2.55b 27.44±0.01a 91.19±0.23a 9.77±0.01ab
T6 380.61±1.80a 125.07±0.23a 27.38±0.03a 91.56±0.23a 10.13±0.01a
2019 CK 352.50±0.64c 105.28±0.16d 27.11±0.07a 91.52±0.08a 9.55±0.02c
T1 369.10±0.38b 109.52±0.05cd 27.22±0.05a 92.02±0.12a 9.82±0.00bc
T2 369.80±0.56b 109.66±0.14cd 27.26±0.02a 92.26±0.07a 9.96±0.01ab
T3 372.00±0.98ab 111.25±0.06bc 27.39±0.03a 91.81±0.05a 10.22±0.01ab
T4 373.75±0.11ab 116.22±0.22ab 27.43±0.06a 92.15±0.11a 9.95±0.02ab
T5 377.57±0.95ab 118.47±0.03ab 27.45±0.05a 92.33±0.17a 10.39±0.01ab
T6 386.91±0.22a 123.14±0.28a 27.59±0.06a 92.39±0.23a 10.69±0.01a

Table 2

Effects of nano-zinc and ion-zinc on rice dry matter accumulation amount in 2018 t/hm2"

处理
Treatment
干物质量Dry matter amount
拔节期
Jointing stage
齐穗期
Heading stage
成熟期
Maturity stage
CK 2.83±0.04e 8.26±0.31b 12.44±0.29b
T1 3.58±0.10d 8.91±0.35ab 14.60±0.59a
T2 3.84±0.05c 9.31±0.31a 14.88±0.35a
T3 3.92±0.11bc 9.46±0.36a 15.18±0.52a
T4 3.91±0.16bc 9.17±0.38a 14.83±0.60a
T5 4.06±0.06ab 9.41±0.43a 15.16±0.57a
T6 4.18±0.14a 9.57±0.46a 15.43±0.34a

Table 3

Effects of nano-zinc and ion-zinc on rice dry matter accumulation and proportion in different growth stage in 2018"

处理
Treatment
播种―拔节Sowing-jointing 拔节―齐穗Jointing-heading 齐穗―成熟Heading-maturity
积累量
Accumulation (t/hm2)
比例
Ratio (%)
积累量
Accumulation (t/hm2)
比例
Ratio (%)
积累量
Accumulation (t/hm2)
比例
Ratio (%)
CK 2.83±0.04e 22.72 5.43±0.33a 43.69 4.18±0.32b 33.60
T1 3.58±0.10d 24.53 5.33±0.36a 36.47 5.70±0.24a 39.00
T2 3.84±0.05c 25.82 5.47±0.26a 36.77 5.57±0.47a 37.41
T3 3.92±0.11bc 25.84 5.53±0.46a 36.46 5.72±0.38a 37.70
T4 3.91±0.16bc 26.37 5.26±0.54a 35.49 5.66±0.85a 38.14
T5 4.06±0.06ab 26.79 5.35±0.46a 35.27 5.75±0.35a 37.95
T6 4.18±0.14a 27.09 5.39±0.45a 34.96 5.86±0.80a 37.95

Fig.1

Effects of nano-zinc and ion-zinc on SPAD value of rice in 2018"

Table 4

Effects of nano-zinc and ion-zinc on leaf photosynthetic parameters of rice in 2018"

处理Treatment Pn [μmol/(m2·s)] Gs [mol/(m2·s)] Ci (μmol/mol) Tr [mmol/(m2·s)]
CK 13.93±0.53e 0.58±0.02e 279.62±4.83c 7.34±0.21c
T1 19.14±0.57d 0.81±0.03d 326.50±1.48a 9.37±0.20b
T2 20.61±0.15c 0.86±0.01c 320.69±6.23ab 9.38±0.09b
T3 22.21±1.60ab 0.92±0.02b 313.96±10.28b 10.05±0.39a
T4 21.22±0.50bc 0.86±0.01c 314.08±7.07b 10.30±0.24a
T5 22.58±0.18a 0.93±0.01b 319.59±3.73ab 10.40±0.42a
T6 22.92±0.13a 0.97±0.02a 320.08±5.59ab 10.48±0.19a

Table 5

Effects of nano-zinc and ion-zinc on rice LAI in 2018"

处理
Treatment
拔节期
Jointing stage
齐穗期
Heading stage
成熟期
Maturity stage
CK 4.05±0.04d 7.13±0.12c 3.28±0.09c
T1 4.27±0.04c 7.38±0.08b 3.44±0.08bc
T2 4.47±0.00ab 7.38±0.08b 3.57±0.10a
T3 4.52±0.07ab 7.44±0.16ab 3.67±0.12a
T4 4.42±0.04b 7.42±0.07ab 3.58±0.11ab
T5 4.45±0.20ab 7.43±0.01ab 3.61±0.16ab
T6 4.58±0.01a 7.62±0.20a 3.78±0.11a

Table 6

Effects of nano-zinc and ion-zinc on zinc content and accumulation in rice grains"

处理
Treatment
2018 2019
籽粒锌含量
Grain Zn content (mg/kg)
籽粒锌积累
Grain Zn accumulation (g/hm2)
籽粒锌含量
Grain Zn content (mg/kg)
籽粒锌积累
Grain Zn accumulation (g/hm2)
CK 17.21±0.15e 161.11±1.00e 17.17±0.13c 163.94±6.01d
T1 18.62±0.29d 176.46±3.50d 19.12±0.44b 187.84±6.21c
T2 20.18±0.48c 194.01±5.07c 19.39±0.75b 193.12±10.48bc
T3 21.45±0.34b 208.70±10.56b 19.67±0.73b 200.92±13.96bc
T4 19.91±0.19c 190.91±7.67c 20.04±1.15b 199.41±4.20bc
T5 21.82±0.16b 213.14±3.89b 20.26±0.19b 210.52±11.26b
T6 22.62±0.45a 229.15±7.01a 21.70±0.29a 231.95±18.18a

Fig.2

Effects of zinc fertilizer application amount on zinc accumulation in rice grains"

[1] 韩金玲, 李雁鸣, 马春英. 锌对作物生长发育及产量的影响(综述). 河北科技师范学院学报, 2004, 18(4):72-75.
[2] Brown K H, Rivera J A, Bhutta Z, et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 2004, 25(1/2):199-203.
[3] 石荣丽, 邹春琴, 张福锁. 籽粒铁、锌营养与人体健康研究进展. 广东微量元素科学, 2006, 13(7):1-8.
[4] 陈凤霞, 吕杰, 史元, 等. 我国稻米质量安全生态环境的现状及发展对策. 生态经济, 2015, 31(2):109-112.
[5] 刘珍环, 李正国, 唐鹏, 等. 近30年中国水稻种植区域与产量时空变化分析. 地理学报, 2013, 68(5):680-693.
[6] 冯绪猛, 郭九信, 王玉雯, 等. 锌肥品种与施用方法对水稻产量和锌含量的影响. 植物营养与肥料学报, 2016, 22(5):1329-1338.
[7] 郭九信, 廖文强, 孙玉明, 等. 锌肥施用方法对水稻产量及籽粒氮锌含量的影响. 中国水稻科学, 2014, 28(2):185-192.
[8] Sushanta K N, Dilip K D. Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.). Nutrient Cycling in Agroecosystems, 2008, 81(3):219-227.
doi: 10.1007/s10705-007-9158-7
[9] 付力成. 叶面喷施锌肥对水稻锌吸收、分配及积累的影响. 杭州:浙江大学, 2011.
[10] Khampuang K, Lordkaew S, Dell B, et al. Foliar zinc application improved grain zinc accumulation and bioavailable zinc in unpolished and polished rice. Plant Production Science, 2021, 24(1):94-102.
doi: 10.1080/1343943X.2020.1797512
[11] 刘琦, 王张民, 潘斐, 等. 大田条件下水稻锌营养强化方法探究及效果评估. 土壤, 2019, 51(1):32-38.
[12] Prakash P, Hemalatha M, Joseph M. Zinc accounting for lowland rice (Oryza sativa L.) under different methods of zinc application with green leaf manuring. Advances in Crop Science and Technology, 2018, 6(3):374.
[13] Guo J X, Feng X M, Hu X Y, et al. Effects of soil zinc availability,nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. The Journal of Agricultural Science, 2016, 154(4):584-597.
doi: 10.1017/S0021859615000441
[14] 朱世东, 周根树, 蔡锐, 等. 纳米材料国内外研究进展Ⅰ——纳米材料的结构、特异效应与性能. 热处理技术与装备, 2010, 31(3):1-5,26.
[15] Yuvaraj M, Subramanian K S. Fabrication of zinc nano fertilizer on growth parameter of rice. Trends in Biosciences, 2014, 7(17):2564-2565.
[16] 吴文革, 周永进, 张健美, 等. 杂交中籼稻钵苗机插群体特征及产量形成优势分析. 核农学报, 2016, 30(7):1427-1434.
doi: 10.11869/j.issn.100-8551.2016.07.1427
[17] 徐金益, 申强, 赵冬青, 等. 无锡地区不同锌肥用量对水稻产量的影响. 现代农业研究, 2019(2):39-40,57.
[18] Pareek D K, Khandelwal R B, Deo C. Management of zinc fertilizer for sustainable wheat [Triticum aestvum (L.)] production on soil test value of zinc in ustipsamment soils of Rajasthan. An Asian Journal of Soil Science, 2012, 7(2):339-344.
[19] 刘铮. 我国土壤中锌含量的分布规律. 中国农业科学, 1994, 27(1):30-37.
[20] 郭九信, 隋标, 商庆银, 等. 氮锌互作对水稻产量及籽粒氮、锌含量的影响. 植物营养与肥料学报, 2012, 18(6):1336-1342.
[21] 陈鸽, 李祖胜, 李中希, 等. 播种量、施氮量和氮肥运筹对直播杂交稻产量及干物质生产的影响. 杂交水稻, 2020, 35(6):43-48.
[22] 付春霞, 张元珍, 王衍安, 等. 缺锌胁迫对苹果叶片光合速率及叶绿素荧光特性的影响. 中国农业科学, 2013, 46(18):3826-3833.
[23] 张凯岳. 锌对水稻碳酸酐酶和光合作用的调节作用研究. 武汉:华中农业大学, 2015.
[24] 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37(5):736-743.
[25] 刘雪琴. 纳米ZnO/AM真菌对玉米的生物效应及作用机理研究. 重庆:西南大学, 2015.
[26] 李琳慧. 纳米TiO2对土壤氮转化相关微生物和酶的影响. 长春:吉林大学, 2015.
[27] 王小燕, 马国辉, 狄浩, 等. 纳米增效尿素对水稻产量及氮肥农学利用率的影响. 植物营养与肥料学报, 2010, 16(6):1479-1485.
[28] 孙耀琴, 申聪聪, 葛源. 典型纳米材料的土壤微生物效应研究进展. 生态毒理学报, 2016, 11(5):2-13.
[29] 曹际玲, 冯有智, 林先贵. 人工纳米材料对植物-微生物影响的研究进展. 土壤学报, 2016, 53(1):1-11.
[30] García-Gómez C, Obrador A, González D, et al. Comparative effect of ZnO NPs,ZnO bulk and ZnSO4 in the antioxidant defenses of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment, 2017, 589(6):11-24.
doi: 10.1016/j.scitotenv.2017.02.153
[31] Josko I, Oleszczuk P, Futa B. The effect of inorganic nanoparticles (ZnO,Cr2O3,CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma, 2014, 6:528-537.
[32] 李贵莲, 陈日远, 刘厚诚, 等. 纳米胶片处理对生菜生长及元素吸收的影响. 江苏农业科学, 2015, 43(11):237-238,243.
[33] 陈丁, 郑爱榕, 马春宇. 纳米氧化锌和二氧化硅对海水中磷酸根的吸附. 科技创新与应用, 2017, 11(27):174-175,179.
[34] 梁振凯, 郭聪颖, 王彩芝, 等. 氮锌配施促进小麦根系形态建成及其生理活性提高. 植物营养与肥料学报, 2020, 26(5):826-839.
[35] 杨习文, 宋淼, 李秋杰, 等. 氮锌配施对小麦锌转运、分配与累积的影响. 应用生态学报, 2020, 31(1):148-156.
doi: 10.13287/j.1001-9332.202001.027
[36] Siddiqui Z A, Parveen A, Ahmad L, et al. Effects of graphene oxide and zinc oxide nanoparticles on growth,chlorophyll,carotenoids,proline contents and diseases of carrot. Scientia Horticulturae, 2019, 249(4):374-382.
doi: 10.1016/j.scienta.2019.01.054
[37] Wang X P, Li Q Q, Pei Z M, et al. Effects of zinc oxide nanoparticle on the growth,photosynthetic traits,and antioxidative enzymes in tomato plants. Biologia Plantarum, 2018, 62(4):801-808.
doi: 10.1007/s10535-018-0813-4
[1] Zhou Yujiao, Zhang Weiyang, Yang Jianchang. Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines [J]. Crops, 2022, 38(4): 1-8.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Zheng Siyi, Yang Ye, Song Yuanhui, Hua Qin, Lin Quanxiang, Zhang Haitao, Cheng Zhijun. Identification and Fine Mapping of Sugary Endosperm Mutant m5788 in Rice (Oryza sativa L.) [J]. Crops, 2022, 38(4): 14-21.
[4] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[5] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[6] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[7] Yang Chaozhen, Fang Haidong, Su Yan, Chen Xiaoyan, Liu Xiaoli, Yang Zhongyi. Study on Ecological and Geographic Distribution of Rice Planthopper Resistance Diversity of Rice Germplasms in Yunnan [J]. Crops, 2022, 38(3): 109-114.
[8] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
[9] Dong Weixin, Zhang Yuechen. Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties [J]. Crops, 2022, 38(3): 125-133.
[10] Gao Jie, Li Siyu, Cheng Dayu, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Slow/Controlled Release Fertilizers on Rice Yield and Quality [J]. Crops, 2022, 38(3): 20-26.
[11] Su Yuting, Yuan Shuai, Li Yongsong, Cui Can, Chen Pingping, Wang Xiaoyu, Yi Zhenxie. Effects of Nitrogen Fertilizer Management on Yield and Lodging Resistance Properties of Double-Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2022, 38(3): 225-232.
[12] Du Haimeng, Wei Huanhe, Yu Qingyuan, Dai Qigen. Application Progress and Prospect of Rice Foliar Fertilizer [J]. Crops, 2022, 38(3): 33-38.
[13] Wang Baojun, Cheng Wangda, Shen Yaqiang, Qin Yebo, Su Yao, Chen Gui, Lu Chenni, Zhang Hongmei. Effects of Nitrogen Fertilizer Reduction on Grain Protein of High Quality Rice and Its Rationality Evaluation [J]. Crops, 2022, 38(3): 168-173.
[14] Cheng Dayu, Liu Kun, Gao Jie, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Nutrient and Water Management on Rice Fragrance [J]. Crops, 2022, 38(2): 22-27.
[15] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!