Crops ›› 2023, Vol. 39 ›› Issue (1): 46-51.doi: 10.16035/j.issn.1001-7283.2023.01.007

Previous Articles     Next Articles

Wide Adaptability Performance and Genetic Analysis of National Certified Wheat Variety Shannong 20 with High and Stable Yield

Wang Yanxun1(), Tian Jichun1,2()   

  1. 1Shandong Tianze Taitian Seed Technology Co.,Ltd., Tai'an 271000, Shandong, China
    2Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2022-03-16 Revised:2022-12-15 Online:2023-02-15 Published:2023-02-22

Abstract:

Shannong 20 is a wheat variety with multi-resistance, wide adaptability, high and stable yield, which was bred by conventional breeding and molecular marker-assisted selection by Shandong Agricultural University. Shannong 20 was approved by the National Huanghuai South section, North Section, Xinjiang, and Gansu. Shannong 20 related to Elytrigia Elongata and American germplasm shows excellent agronomic traits such as disease resistance, big spike and big grain. By detecting gene function markers or microsatellite markers closely linked to genes, the key genes controlling important agronomic traits were analyzed, the following results were obtained. Shannong 20 hosted powdery mildew-resistance genes (Pm2, Pm24 and Pm30), contained stripe rust-resistance genes (Yr15 and Yr26), leaf rust-resistance gene Lr21 and sheath blight-resistance gene Ses1, which accounted for its field resistances to stripe, leaf rust, and sheath blight disease. Shannong 20 harbored the gene loci of three factors of wheat yield, such as QGw6A-29 and QTaGW4B.4 for grain weight, QGns2B-2 for kernels per spike, QS12D-3 for spike length, QMtw5D-1 and QMtw6A for tillering and spike formation, which were in accordance with its high yield, stable yield and wide adaptability. The study provides valuable information on a wide range of agronomic important genes of Shannong 20, which may facilitate the utilization of it for improving wheat yield and environmental adaptability in further research.

Key words: Shannong 20, Wheat, High yield, Stable yield, Widely adaptation, Functional or linked markers, Genetic analysis

Table 1

Yield and three components in Huanghuai south section"

年度
Year
试验类别
Experiment type
试验点数
Plot numbers
穗数
Spike numbers (×104/hm2)
穗粒数
Kernels per spike
千粒重
1000-kernel weight (g)
平均产量
Average yield (kg/hm2)
产量增减
Yield(±) (%)
2007-2008 区域试验 20 648.0 32.9 43.1 8473.5 3.90
2008-2009 区域试验 19 687.0 31.8 40.2 8134.5 8.94
2009-2010 生产试验 13 664.5 30.3 45.7 7576.5 5.47

Table 2

Yield and three components in Huanghuai north section"

年度
Year
试验类别
Experiment type
试验点数
Plot numbers
穗数
Spike numbers (×104/hm2)
穗粒数
Kernels per spike
千粒重
1000-kernel weight (g)
平均产量
Average yield (kg/hm2)
产量较对照
Yield (±) (%)
2008-2009 区域试验 14 687 34.5 40.9 8035.5 5.32
2009-2010 区域试验 14 612 35.7 41.9 7756.5 5.10
2010-2011 生产试验 9 630 35.1 44.6 8547.0 3.60

Fig.1

Salt-resistant performance of Shannong 20 in saline-alkali land"

Fig.2

Detection of polymerized genes/QTLs of resistance to powdery mildew and stripe rust in Shannong 20"

Table 3

Shannong 20 hosted multiple disease resistance genes/QTLs from parents"

品种Variety 白粉病Powdery mildew 条锈病Strip rust 叶锈病Leaf rust
PH82-2-2 Pm2,Pm24,Pm16 Yr15,Yr26,YrTp1 Lr21
954072 Pm30,Pm24 Yr5,Yr24 Lr21
山农20 Shannong 20 Pm2,Pm24,Pm30 Yr15,Yr26 Lr21

Table 4

Identification results of disease resistance inoculation of the main diseases in Shannong 20"

病害
Disease
年份Year 同期参试266个品种比较
Compared with 266 cultivars tested in the same year
2007-2008 2008-2009
白粉病Powdery mildew I I 仅山农20一个品种
条锈病Strip rust HR I 16.18%品系达此水平
叶锈病Leaf rust 慢锈病 慢锈病 16.18%品系达此水平
纹枯病Sheath blight HS HS 黄淮麦区无免疫和高抗
赤霉病Scab MS HS 黄淮麦区无免疫和高抗

Fig.3

Performance of disease resistance of Shannong 20 in field"

Table 5

Shannong 20 aggregated six excellent genes of grain weight, kernels per spike and spike length from two parents"

品种Variety 粒重Grain weight 分蘖成穗Tillering spike 穗粒数Kernels per spike 穗长Spike length
PH82-2-2 QGw6A-29 QMtw5D-1, QMtw6A
954072 QGw6A-29, QTaGW4B.4 QGns2B-2 qSl2D
山农20 QGw6A-29, QTaGW4B.4 QMtw5D-1, QMtw6A QGns2B-2 QS12D-3
[1] 李继发, 邓志英, 孙福来, 等. 小麦新品种“山农 20”抗病基因的分子检测. 作物学报, 2014, 40(4):611-621.
[2] 王延训, 晁林海, 田纪春. 国审小麦新品种山农20苗情分析及春季管理技术措施. 农业科技通讯, 2014(6):186-188.
[3] 王延训, 李洪杰, 李恒钊, 等. 山农20小麦抗病性鉴定及其高产生产种筹. 安徽农业科学, 2015, 43(9):126-128.
[4] 王延训, 李洪杰, 纪复勤, 等. 山农20小麦的生物学特性及其秸秆还田地块的高产稳产栽培. 农业科技通讯, 2015(6):176-178.
[5] 李春鑫, 许为钢. 小麦白粉病抗病基因分子标记开发及应用研究进展. 中国农学通报, 2009, 25(10):53-58.
[6] 邱永春, 张书绅. 小麦抗白粉病基因及其分子标记研究进展. 麦类作物学报, 2004, 24(2):127-132.
[7] 董淑静, 许为钢. 小麦条锈病抗性基因研究进展及分子标记辅助聚合育种. 中国农学通报, 2009, 25(13):190-196.
[8] 殷学贵. 小麦抗条锈新基因YrTp1YrTp2的发现和分子标记定位. 兰州:甘肃农业大学, 2005.
[9] 袁军海, 陈万权. 中国小麦主要抗叶锈病基因的有效性评价. 麦类作物学报, 2011, 35(5):794-801.
[10] 田大刚, 林峰, 张彩琴, 等. 利用“永久F2”群体定位抗赤霉病QTL. 作物学报, 2008, 34(4):539-544.
[11] 王军. 与小麦抗白粉病基因Pm12Pm16紧密连锁的SSR分子标记建立. 北京: 中国农业大学, 2004.
[12] 刘子记, 梁永, 朱婕, 等. 小麦抗叶锈病基因Lr9的分子标记及其检测. 麦类作物学报, 2013, 33(2):236-242.
[13] 孙一, 胡亚亚, 杨文香, 等. 六个小麦品系的抗叶锈性评价. 麦类作物学报, 2011, 31(4):762-768.
[14] 张小村, 李斯深, 赵新华, 等. 小麦纹枯病抗性的QTL分析和抗病基因的分子标记. 植物遗传资源学报, 2005, 6(3):276-279.
[15] 周淼平, 任丽娟, 张旭, 等. 小麦赤霉病抗性QTL分析. 作物学报, 2004, 30(8):739-744.
[16] 田纪春, 王延训, 张忠义. 高蛋白优质面包冬小麦新品种PH82-2-2. 中国农学通报, 1995, 11(2):41.
[17] 田纪春, 张忠义, 梁作勤. 优质小麦PH82-2-2的选育经验. 作物杂志, 1994(2):82.
[18] 张秋. 普通小麦遗传图谱构建及重要农艺性状的QTL定位. 泰安:山东农业大学, 2012.
[19] 张文兰. 小麦品质育种研究的新进展. 科技信息, 1999(4):85.
[20] Li Z F, Zheng T C, He Z H, et al. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 2006, 112:1098-1103.
doi: 10.1007/s00122-006-0211-8 pmid: 16450183
[1] Wang Yujiao, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Shi Shubing, Zhao Guangcai. Effects of Sowing Methods on Yield and Quality of Different Varieties of Wheat [J]. Crops, 2023, 39(1): 122-128.
[2] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Nitrogen Application Rate on Yield and Quality of Weak Gluten Wheat in Northern Winter Wheat Region [J]. Crops, 2023, 39(1): 163-169.
[3] Jin Haiyang, Zhang Suyu, Cui Jingyu, Li Xiangdong, Yue Junqin, Zhang Deqi, Yang Cheng, Fang Baoting, Wang Hanfang, Qin Feng. Regulatory Effects of Different Nitrogen Management Methods on Quality of Strong and Medium-Strong Gluten Wheat [J]. Crops, 2023, 39(1): 212-218.
[4] Kan Mingxi, Wang Yanjie, Yu Huiling, Wang Demei, Tao Zhiqiang, Yang Yushuang, Wang Yujiao, Gao Tiantian, Cao Qi, Zhao Guangcai, Chang Xuhong. Effects of Irrigation on Yield, Protein Content and Photosynthetic Performance of Water-Saving Wheat “Hengguan 35” [J]. Crops, 2023, 39(1): 68-75.
[5] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[6] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[7] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[8] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[9] Shen Wenyuan, Chen Xinyu, Yu Xurun, Wu Yunfei, Chen Gang, Xiong Fei. Advance of Effects of Rhizosphere Temperature Stress on Morphology and Physiology of Wheat Root [J]. Crops, 2022, 38(6): 23-32.
[10] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[11] Zhu Qidi, Li Yanyan, Lu Meng, Lin Shengzhe, Yu Chengqiang, Liu Ke. Analysis of Wheat Kernel Quality and Morphological Characteristics at Different Spikelet Positions [J]. Crops, 2022, 38(6): 88-92.
[12] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[13] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[14] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[15] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!