Crops ›› 2023, Vol. 39 ›› Issue (4): 110-117.doi: 10.16035/j.issn.1001-7283.2023.04.017

Previous Articles     Next Articles

Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region

Zheng Fei1(), Chen Jing1, Cui Yakun1, Kong Lingjie1, Meng Qingchang1, Li Jie2, Liu Ruixiang1, Zhang Meijing1, Zhao Wenming1, Chen Yanping1()   

  1. 1Institute of Food Crop,Jiangsu Academy of Agaricultural Sciences, Nanjing 210014, Jiangsu, China
    2Jurong Suke Fresh Maize Research Co.,Ltd., Zhenjiang 212000, Jiangsu, China
  • Received:2022-03-01 Revised:2022-07-27 Online:2023-08-15 Published:2023-08-15

Abstract:

The purpose of this study was to screen out grain mechanical harvesting, promoting the application of maize mechanized grain harvesting technology, which was scaling up new suitable varieties in Huaibei area. With nine summer maize varietiesin different ecological areas of the Huaibei, the screeningexperiments of mechanical kernel harvest were carried out in five different typical ecotype locations in 2020. The growth period, grain moisture content, grain breaking rate, yield, lodging and breaking rate and stem rot incidence of different varieties were determined and analyzed. With the average yield of varieties and the average grain breaking rate during harvest period as the indexes, the bidirectional average mapping method was used to comprehensively evaluate the high yield, stable yield and regional adaptability of each variety,the variety Sukeyu206 with high and stable yield, widely adaptation, dense planting resistance, lodging and discount resistance,fast-dehydrated was selected, which was suitable for mechanical kernel harvest inHuaibei area.

Key words: Maize, Huaibei area, Yielding ability, Yield stability, Mechanical kernel harvest

Table 1

Statistical results of parameters of various varieties"

品种
Variety
籽粒含水率
Grain moisture
content (%)
倒伏倒折率
Lodging and
breaking rate (%)
籽粒破碎率
Grain broken
rate (%)
均产
Average
yield
(kg/hm2)
较CK1增产
Increased yield
compared with
CK1 (±%)
较CK2增产
Increased yield
compared with
CK2 (±%)
高稳系数
High stability
coefficient (%)
苏科玉206Sukeyu206 26.74±1.60 4.61±4.36 5.06±1.23 8379.1Aa 11.65 22.42 91.50
郑单958Zhengdan958(CK1) 29.35±1.71 8.44±8.94 10.58±3.55 7505.1Bb 9.65 77.96
苏玉39Suyu39 32.06±1.13 12.97±14.19 15.49±3.02 7451.6Bb -0.71 8.87 73.86
苏科玉1417Sukeyu1417 30.57±2.25 14.22±12.65 11.77±3.45 7313.2BCb -2.56 6.85 70.96
迪卡517Dika517 25.76±1.07 9.96±8.09 3.64±1.15 7207.1BCbc -3.97 5.30 78.56
苏玉29Suyu29 31.51±1.18 14.66±15.87 13.63±3.68 7134.4BCDbc -4.94 4.23 68.54
先玉335Xianyu335(CK2) 28.11±1.88 14.12±11.45 6.98±1.96 6844.5CDEcd -8.80 65.44
苏玉41Suyu41 31.64±1.32 26.44±15.75 14.44±4.25 6610.4DEde -11.92 -3.42 60.47
苏玉10号Suyu10 26.38±1.36 17.62±13.29 5.71±1.46 6379.7Ee -14.99 -6.79 64.38

Table 2

Analysis of yielding ability and yield stability of various varieties"

品种
Variety
丰产性参数
Yielding parameter
稳定性参数
Stability coefficient
回归系数
Regression
coefficient
变异系数
Variation
coefficient
(%)
适应地区
Adaptive
area
综合评价
Comprehensive
assessment
产量
Yield (kg/hm2)
离差
Deviation
方差
Variance
变异度
Variation degree
苏科玉206Sukeyu206 8379.11 1176.31 267436.51 6.17 0.65 9.85 E1~E5 很好
郑单958Zhengdan958 (CK1) 7505.09 302.29 403488.82 8.46 0.79 14.24 E1~E5 较好
苏玉39Suyu39 7451.63 248.83 393573.10 8.42 1.13 18.17 E1~E5 较好
苏科玉1417Sukeyu1417 7313.25 110.45 227251.11 6.52 1.27 19.89 E1~E5 较好
迪卡517Dika517 7207.11 4.31 642054.50 11.12 0.44 10.01 E3,E4 一般
苏玉29Suyu29 7134.39 -68.41 220824.03 6.59 1.35 20.69 E1~E5 一般
先玉335Xianyu335(CK2) 6844.54 -358.26 392585.51 9.15 1.19 21.07 E1~E5 一般
苏玉41Suyu41 6610.36 -592.44 814073.59 13.65 1.29 24.48 E2,E5 不好
苏玉10号Suyu10 6379.72 -823.08 234257.94 7.59 0.88 16.69 E1~E5 较差

Table 3

AMMI model analysis for yields of various varieties"

变异来源
Source of variation
自由度
df
离均差平方和
Sum of squares of mean deviation
均方
Mean square
F
F value
占总变异平方和比例
Percentage of total variance
sum ofsquares (%)
总变异Total variation 89 155869938.90 1751347.63
处理Treatment 44 144163345.29 3276439.67 12.59**
基因型Genotype 8 27107077.19 3388384.65 13.02** 17.39
环境Environment 4 88291907.22 22072976.80 84.85** 56.64
交互作用Interaction 32 28764360.89 898886.28 3.46** 18.45
PCA1 11 17641465.06 1603769.55 9.16** 61.33
PCA2 9 7355488.26 817276.47 4.67** 25.57
PCA3 7 2892381.72 413197.39 2.36**
残差Residual error 5 875025.85 175005.17
误差Error 45 11706593.62 260146.52

Fig.1

The double-axes diagram of AMMI model analysis for the yields of varieties"

Table 4

Correlation analysis of grain quality of mechanical kernel harvest"

指标
Index
籽粒含水率
Grain moisture
content
产量
Yield
生育期
Growth
period
籽粒破碎率
Grain broken
rate
倒伏倒折率
Lodging and
breaking rate
茎腐病发病率
Incidence
ofstem rot
籽粒含水率Grainmoisture content 1.00
产量Yield -0.08 1.00
生育期Growth period 0.89** 0.02 1.00
籽粒破碎率Grain broken rate 0.99** -0.11 0.87** 1.00
倒伏倒折率Lodgingand breaking rate 0.45 -0.82** 0.39 0.48 1.00
茎腐病发病率Incidence of stem rot -0.65* -0.37 -0.67* -0.69* 0.08 1.00

Fig.2

The relationship between the grain moisture content and grain broken rate"

Fig.3

The relationship between the grain moisture content and growthperiod"

Fig.4

The relationship between the incidence of stem rot and lodging and breaking rate"

Fig.5

The diagram of two-way average method with grain broken rate and yield at experiment locations"

Table 5

Survey results of parameters ofthe nine varieties"

地点
Location
品种
Variety
籽粒破碎率
Grain broken
rate (%)
籽粒含水率
Grain moisture
content (%)
均产
Average yield
(kg/hm2)
茎腐病发病率
Incidence of
stem rot (%)
倒伏倒折率
Lodging and
breaking rate (%)
生育期
Growth
period (d)
E1 苏科玉206 4.16±0.62 26.35±0.15 9078.09±364.63 2.65±1.15 2.85±1.35 102
郑单958(CK1) 11.11±1.00 27.95±0.95 7682.57±463.85 4.20±0.40 8.25±0.35 103
苏玉39 17.05±1.85 31.45±0.35 8773.99±363.03 2.40±0.30 6.55±3.05 107
苏科玉1417 8.35±1.43 28.40±0.50 8380.75±421.52 7.50±2.30 10.15±2.45 103
迪卡517 3.07±0.26 25.60±0.50 7945.39±222.51 2.85±0.25 3.20±0.10 100
苏玉29 7.51±0.90 30.10±1.00 7874.08±514.85 2.60±2.00 5.95±0.85 107
先玉335(CK2) 6.00±0.61 27.30±0.20 8136.16±205.95 6.35±0.95 9.40±1.80 104
苏玉41 9.24±0.81 30.40±0.10 6457.50±347.95 0.95±0.95 27.90±2.50 106
苏玉10号 5.96±1.12 26.75±1.15 7180.36±273.37 8.85±1.95 22.90±2.50 100
E2 苏科玉206 7.20±0.50 29.00±0.50 8683.50±421.50 0.00±0.00 0.00±0.00 102
郑单958(CK1) 13.64±0.54 30.55±0.55 7382.71±381.21 0.00±0.00 0.00±0.00 104
苏玉39 18.35±1.85 32.55±0.25 7906.78±233.72 0.00±0.00 0.00±0.00 108
苏科玉1417 16.89±4.00 33.30±0.60 8082.59±778.59 2.85±2.85 2.85±2.85 105
迪卡517 4.00±0.80 26.75±0.35 7351.51±182.51 0.60±0.60 0.60±0.60 100
苏玉29 14.64±1.03 32.40±0.30 8239.03±221.53 0.60±0.60 2.45±2.45 108
先玉335(CK2) 9.00±0.70 29.95±0.55 8188.31±426.81 0.60±0.60 1.40±0.80 105
苏玉41 20.50±4.90 33.50±1.00 7729.32±623.82 1.20±0.00 10.40±4.80 109
苏玉10号 6.70±0.60 26.75±0.15 6731.20±339.80 0.00±0.00 0.00±0.00 99
E3 苏科玉206 4.95±2.85 27.50±1.00 8608.21±319.68 5.55±0.65 5.95±1.25 105
郑单958(CK1) 14.30±1.80 31.55±0.75 7878.07±491.54 4.70±1.60 8.20±1.60 105
苏玉39 17.40±2.80 33.80±1.00 6049.90±394.07 3.85±0.65 22.75±2.85 110
苏科玉1417 13.14±2.26 32.15±0.75 6186.75±100.16 9.65±0.95 23.00±2.50 105
迪卡517 5.50±1.90 26.95±0.15 7662.27±355.92 6.40±1.90 10.70±2.10 102
苏玉29 17.11±5.51 32.35±1.75 6326.62±331.91 6.30±1.00 22.55±4.85 110
先玉335(CK2) 9.20±1.00 30.30±0.90 6280.39±523.76 16.37±2.56 18.50±3.50 105
苏玉41 16.48±1.92 32.55±0.95 5564.35±416.16 3.35±0.45 35.75±3.15 110
苏玉10号 7.30±0.80 28.10±0.50 6786.79±131.47 8.59±1.99 12.85±3.55 101
E4 苏科玉206 4.35±0.45 24.75±0.65 6993.98±251.07 7.35±0.45 11.45±0.75 105
郑单958(CK1) 6.70±0.60 27.50±0.30 5850.19±284.33 4.30±1.20 23.10±5.50 106
苏玉39 13.35±1.05 31.50±0.80 5887.28±270.07 2.70±1.60 32.85±5.15 109
苏科玉1417 9.00±1.40 28.20±0.60 5345.06±357.10 7.70±0.20 31.60±1.90 103
迪卡517 2.75±0.65 24.50±0.80 6127.29±262.22 16.85±2.35 19.85±1.45 104
苏玉29 13.36±3.26 30.35±1.25 4840.15±180.39 8.55±1.05 39.00±1.30 110
先玉335(CK2) 5.50±0.30 26.30±0.30 4713.60±320.77 9.00±1.00 31.50±3.50 108
苏玉41 12.75±1.65 30.80±0.80 4572.98±74.31 4.85±0.75 46.85±2.05 110
苏玉10号 5.00±0.10 25.90±0.40 4475.48±289.36 6.80±1.00 36.15±6.15 101
E5 苏科玉206 4.65±0.15 26.10±0.70 8531.78±107.99 4.40±1.20 2.80±2.80 105
郑单958(CK1) 7.15±1.05 29.20±0.00 8731.93±175.10 4.25±1.55 2.65±0.85 105
苏玉39 11.30±1.00 31.00±0.70 8640.20±232.86 2.70±1.40 2.70±1.40 109
苏科玉1417 11.50±1.10 30.80±1.00 8571.06±384.54 3.40±1.00 3.50±1.10 105
迪卡517 2.90±0.50 25.00±0.70 6949.09±242.74 13.50±1.00 15.45±2.95 102
苏玉29 15.56±1.05 32.35±0.25 8392.04±294.85 3.80±3.80 3.35±3.35 109
先玉335(CK2) 5.20±0.00 26.70±0.70 6904.24±648.12 8.45±1.65 9.80±3.00 105
苏玉41 13.25±1.15 30.95±0.75 8727.63±309.10 1.70±1.10 11.30±3.50 109
苏玉10号 3.60±1.50 24.40±0.10 6724.74±368.12 11.60±0.90 16.20±3.40 102
[1] 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014(2):76-79.
[2] 徐德利, 刘冬玲, 李国权. 苏北地区玉米生产存在的问题及技术创新思路. 安徽农业科学, 2016, 44(5):282-283,327.
[3] 王克如, 孔令杰, 袁建华, 等. 江苏沿海地区夏玉米机械粒收质量与品种筛选研究. 玉米科学, 2018, 26(5):110-116.
[4] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报, 2017, 35(3):265-272.
[5] 柴宗文, 王克如, 郭银巧, 等. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11):2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
[6] 耿安红, 孙扣忠. 江苏沿海地区夏玉米生产季节气候特点与高产栽培关键技术. 上海农业科技, 2016(6):71,73.
[7] 常磊, 岳云, 柴守玺, 等. 品种稳定性不同分析模型在西北小麦区域试验中应用探讨. 干旱地区农业研究, 2013, 31(2):13-18.
[8] 孙艳杰, 南元涛, 等. 玉米杂交种一年多点丰产性和稳产性分析. 黑龙江农业科学, 2015(6):5-8.
[9] 王彦飞, 栾奕, 李艳华, 等. 玉米基础群体改良系稳定性与丰产性研究. 玉米科学, 2016, 24(5):8-14.
[10] 刘松涛, 刘过, Zenda T, 等. 河北省不同生态区夏玉米丰产、稳产性品种筛选研究. 作物杂志, 2018(2):56-60.
[11] 郑飞, 陈静, 孔令杰, 等. 黄淮海南部玉米新品种丰产性和稳产性及应用前景分析. 中国农学通报, 2019, 35(33):12-17.
doi: 10.11924/j.issn.1000-6850.casb18070011
[12] 温振民. 用高稳系数法估算玉米杂交种高产稳产性的探讨. 作物学报, 1994, 20(4):508-512.
[13] 黄平俊, 易建华, 蒲文宣, 等. 应用AMMI模型分析烤烟品种的产量适宜性. 中国农学通报, 2013, 29(4):168-172.
[14] 唐启义, 冯明光.DPS数据处理系统—实验设计、 统计分析及模型优化. 北京: 科学出版社, 2006.
[15] 鲁毛宁, 高树仁, 王霞, 等. 大庆地区玉米品种产量稳定性分析. 黑龙江八一农垦大学学报, 2015, 27(3):10-13.
[16] 王磊, 高杰, 渠建洲, 等. 两种密度下不同玉米品种的高产稳产及适应性分析. 玉米科学, 2016, 24(2):136-141.
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 玉米收获机械技术条件: GB/T 21962- 2008. 北京: 中国标准出版社,2008.
[18] 李少昆, 张万旭, 王克如, 等. 北疆玉米密植高产宜粒收品种筛选. 作物杂志, 2018(4):62-68.
[19] 赵瑞霞, 石海波, 梁红伟, 等. 大兴安岭岭东温凉区玉米机械粒收品种筛选及籽粒含水率对粒收质量的影响. 北方农业学报, 2020, 48(6):13-21.
doi: 10.12190/j.issn.2096-1197.2020.06.03
[20] 邵青, 刘冬玲, 孔令杰. 苏北夏玉米机械粒收品种筛选与制约因素探讨. 江苏农业科学, 2020, 48(5):76-79.
[21] 冯勇, 宋国栋, 侯旭光. 玉米品种试验中宜机收指标的探讨. 北方农业学报, 2018, 46(1):21-24.
[22] 王亮, 丰光, 李妍妍, 等. 玉米倒伏与植株农艺性状和病虫害发生关系的研究. 作物杂志, 2016(2):83-88.
[23] 董怀玉, 刘可杰, 刘晶, 等. 机收玉米品种收获期田间茎腐病抗性表型和植株倒伏状况调查. 玉米科学, 2021, 29(1):170-176.
[24] Plett S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Canada Journal Plant Science, 1994, 74(3):543-544.
[1] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[2] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[3] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[4] Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37.
[5] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[6] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[7] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[8] Gao Mutian, Qiu Guanjie, Zhu Tongtong, Li Ruilian, Deng Min, Luo Hongbing, Huang Cheng. Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population [J]. Crops, 2023, 39(3): 51-57.
[9] Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Qu Haitao, Li Fulin, Zhang Shuqin, Li Guangfa. Genetic Analysis of Color Traits in Sheath, Silk, Anther and Cob of Isolated Population Based on Maize DH Lines [J]. Crops, 2023, 39(3): 75-79.
[10] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[11] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[12] Meng Yaxuan, Yao Xuhang, Zhou Baoyuan, Liu Yinghui, Yuan Jincheng, Ma Wei, Zhao Ming. Research Progress on Mixed Silage of Zea mays [J]. Crops, 2023, 39(2): 24-29.
[13] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[14] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[15] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!