Crops ›› 2023, Vol. 39 ›› Issue (4): 31-37.doi: 10.16035/j.issn.1001-7283.2023.04.005

Previous Articles     Next Articles

Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.)

Liu Songtao1(), Tian Zaimin1, Liu Zigang1, Gao Zhijia2, Zhang Jing2, He Donggang3, Huang Zhihong1, Lan Xin1   

  1. 1Hebei North University/Key Laboratory of Hebei Province Agricultural Products Food Quality and Safety Analysis and Testing, Zhangjiakou 075000, Hebei, China
    2Hebei Universe Agricultural Science and Technology Co., Ltd., Zhangjiakou 075000, Hebei, China
    3Hebei Zhaoyu Seed Industry Group Co., Ltd., Shijiazhuang 050000, Hebei, China
  • Received:2022-01-02 Revised:2022-04-02 Online:2023-08-15 Published:2023-08-15

Abstract:

Lodging is one of the important factors affecting maize production. In this study, three maize varieties with different lodging resistance [Jingnongke 728 with high lodging resistance (H), Jinnong 738 with medium lodging resistance (M) and Xianyu 335 with low lodging resistance (L)] were used for transcriptome analysis to explore the genes related to maize lodging resistance. The results showed that a total of 10093 differentially expressed genes (DEGs) were identified in the three comparison groups, and the most DEGs of 7779 were identified in Xianyu 335 and Jingnongke 728 groups. GO functional enrichment analysis showed that the different lodging resistance of the three maize varieties may be related to the different number of DEGs enriched into the same GO terms. Metabolic pathway enrichment analysis showed that L-vs-H, M-vs-H were significantly enriched in phenylpropanoid biosynthesis, secondary metabolite biosynthesis and flavonoid biosynthesis, while L-vs-M was significantly enriched in photosynthesis antenna protein and plant-pathogen interaction pathways. The stem microstructure showed that Xianyu 335 had the smallest single vascular bundle area and the thinnest stem epidermal cell thickness, while Jingnongke 728 had the largest single vascular bundle area and the thickest epidermal cell thickness. The results of this study further clarified the genes and metabolic pathways related to lodging resistance in maize, which laid a foundation for directional cloning, and also provided a foundation for molecular design breeding of new lodging resistant varieties.

Key words: Maize, RNA-seq, Microscopic structure, Differentially expressed genes, Lodging-resistant

Table1

The primer sequence of RT-qPCR"

基因名称Gene name 前引物Forward primer 后引物Reverse primer 产物长度Product size (bp)
LOC100281532 GGAGGAGATGATGGGCAGC CTCGATCTTCACCAGGGGC 79
LOC100273579 AGAAGTCGCTGAGCCTGAAC TCTGCATCAGCGGGTAGTTG 141
LOC100272756 AGGAGGACAAGTCCGTGGAG TATCGATCTTGTCGAGGCCG 174
LOC541914 CCGTTAACCTGTCGAGGCTT GTCTCCAACCTTCCAGCTCC 123
LOC100272970 ATCAGCGTACATCGCGTCC AACTGAGGTGGGCTCTGTGT 94
LOC100194371 CGGTTCTGCTTCAAGACGAT CGGTAGTAGCTCCTTGGGTG 113
LOC100281042 TGGTGGAGGAGTACAGGAGG GTGCCGTTCATCATGCTGTC 172
LOC100282047 GTCGAACAGCGAGGAGTACC GTCGAACCAGAGGTGGAACC 163
LOC100283318 CTACTTCATCTCGGAGGGGC GAGTAGGTGTGGAAGTCGGC 177
LOC100284765 CCACCATCAGTAGCGGTCG GCCCGTGATGTTGCTGGA 168

Table 2

The summary of RNA-Seq data"

样品名称
Sample name
原始数据
Raw read
有效数据
Clean read
碱基所占百分比
Q30(%)
GC含量
GC content(%)
单一比对率
Unique mapped
多比对率
Multi mapped
JNK728-1 46743554 44778802 94.64 53.21 38131199(85.15%) 2833048(3.58%)
JNK728-2 42213792 40278042 93.90 53.24 34173234(84.84%) 2543399(3.56%)
JNK728-3 45140086 42175780 94.60 53.16 35820137(84.93%) 2740012(3.64%)
JN738-1 45628206 43858376 94.36 53.69 38079538(86.82%) 2519952(3.37%)
JN738-2 49113472 46927518 94.46 53.78 40671536(86.67%) 2782255(3.41%)
JN738-3 47537856 45732776 93.90 53.72 39628836(86.65%) 2690579(3.43%)
XY335-1 45920308 44134008 94.30 54.57 38518679(87.28%) 2222552(3.04%)
XY335-2 44670476 42529790 94.55 54.84 37079717(87.19%) 2186084(3.04%)
XY335-3 46723572 44596496 94.02 55.08 38796470(86.99%) 2319389(3.06%)

Fig.1

Principal componentanalysis of samples used for transcriptome sequencing"

Table 3

Statistics of differentially expressed genes"

分组
Group
DEGs数量
DEGs number
下调
Down-regulated
上调
Up-regulated
L-vs-H 7779 4411 3368
L-vs-M 5373 2896 2477
M-vs-H 4905 2831 2074

Fig.2

Venn diagram analysis of DEGs observed in comparison groups"

Fig.3

Gene ontology (GO) enrichment analysis of DEGs The colorgradient (orange to red)corresponds to the level of significance (lower to higher; P<0.05) of enrichment of the corresponding GO terms"

Fig.4

Metabolic pathway enrichment analysis of DEGs"

Fig.5

Microstructure of the stems of the three maize varieties (a) number of stem vascular bundles within the microscope visual scope; (b)single vascular bundle area; (c)stem epidermal cell thickness"

Fig.6

Microstructures of the stalk of the three maize varieties Different letters indicate significant difference (P<0.05)"

Fig.7

The qRT-PCR validation of the RNA-seq data for the ten DEGs"

[1] 王聪, 马青美, 郭新梅, 等. 玉米茎秆抗倒伏相关性状的遗传效应分析. 玉米科学, 2021, 29(4):9-17.
[2] 丰光, 黄长玲, 邢锦丰. 玉米抗倒伏的研究进展. 作物杂志, 2008(4):12-14.
[3] 王夏青, 宋伟, 张如养, 等. 玉米茎秆抗倒伏遗传的研究进展. 中国农业科学, 2021, 54(11):2261-2272.
doi: 10.3864/j.issn.0578-1752.2021.11.002
[4] 马天军. 玉米倒伏种类及防治对策研究. 新农业, 2021(21):14.
[5] 李妍妍, 景希强, 丰光, 等. 玉米倒伏的主要相关因素研究进展. 辽宁农业科学, 2013(4):47-51.
[6] 徐天成, 周富亮, 黄联润, 等. 玉米抗倒伏性相关研究进展. 安徽农学通报, 2019, 25(11):29-32.
[7] Cloninger FR, Zuber MS. Methods for evaluating stalk quality in corn. Phytopathology, 1970, 60:295-300.
doi: 10.1094/Phyto-60-295
[8] 冯素伟, 姜小苓, 胡铁柱, 等. 不同小麦品种茎秆显微结构与抗倒强度关系研究. 中国农学通报, 2012, 28(36):57-62.
[9] LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR andthe 2-∆∆CT method. Methods, 2001, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[10] 殷静. 大豆茎倒伏突变体基因定位、转录组测序及2个木质素合成基因的克隆研究.南京:南京农业大学, 2013.
[11] 杨硕, 郑云霄, 黄亚群, 等. 不同玉米自交系茎秆上部维管束数目的差异分析. 植物遗传资源学报, 2021, 22(2):466-475.
[12] 张巫军, 段秀建, 姚雄, 等. 烯效唑对遮阴下重穗型水稻渝香203茎秆形态结构和抗倒伏性的影响. 四川农业大学学报, 2019, 37(6):755-761.
[13] 胡丹. 甜荞抗倒伏相关性状的遗传分析及木质素合成特征. 重庆:西南大学, 2016.
[14] 刘丹. 木质素相关基因表达调控对油菜木质素合成及抗菌核病和抗倒伏性的影响. 北京: 中国农业科学院, 2008.
[1] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[2] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[3] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[4] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[5] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[6] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[7] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[8] Gao Mutian, Qiu Guanjie, Zhu Tongtong, Li Ruilian, Deng Min, Luo Hongbing, Huang Cheng. Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population [J]. Crops, 2023, 39(3): 51-57.
[9] Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Qu Haitao, Li Fulin, Zhang Shuqin, Li Guangfa. Genetic Analysis of Color Traits in Sheath, Silk, Anther and Cob of Isolated Population Based on Maize DH Lines [J]. Crops, 2023, 39(3): 75-79.
[10] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[11] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[12] Meng Yaxuan, Yao Xuhang, Zhou Baoyuan, Liu Yinghui, Yuan Jincheng, Ma Wei, Zhao Ming. Research Progress on Mixed Silage of Zea mays [J]. Crops, 2023, 39(2): 24-29.
[13] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[14] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[15] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!