Crops ›› 2023, Vol. 39 ›› Issue (4): 38-43.doi: 10.16035/j.issn.1001-7283.2023.04.006

Previous Articles     Next Articles

Evaluation and Selection of Pisumsativum L. Germplasm Resources Based on Agronomic Traits

ChenZhikai 1(), Hou Wanwei2,3   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and ForestrySciences, Xining 810016, Qinghai, China
    3Qinghai Scientific Observation and ExperimentalStation of Crop Gene Resourcesand Germplasm Creation of theMinistry of Agriculture and Rural Affairs/National Crop Germplasm Resources Duplicate Library, Xining 810016, Qinghai, China
  • Received:2022-09-12 Revised:2022-11-18 Online:2023-08-15 Published:2023-08-15

Abstract:

Genetic diversity analysis, principal component analysis and cluster analysis were performed on eight main agronomic traits of 327 pea germplasm resources. The results showed that variation coefficient of the eightmain agronomic traits of 327 pea germplasm ranged 14.41%-35.01%, there were significant differences. The principal component analysis showed that the cumulative contribution rate of the three principal components reached 63.290%. The absolute value of the feature vector of pods number in the first principal component was the highest, and that of yield per plant in the second principal component was the highest, and that of number of pod seeds in the third principal component was the highest. According to the contribution rate of principal component and the absolute value of eigenvector, pods number, yield per plant and pod seeds number were used as evaluation indexes for pea germplasm resources. A total of 327 pea germplasms were divided into four groups by cluster analysis, among which group A was dominated by dwarf and large-grain materials, group B was dominated by low-yielding materials with the largest number of pods per fruit node, group C was dominated by high-stalk and high-yielding materials, group D was dominated by materials with the largest number of branches and other materials with medium to upper agronomic properties. From the three aspects of high-stalk, high yield and large grain, 12 excellent pea germplasm resources were selected: high-stalk (87, 148, 307, 220), high yield (82, 145, 46, 114) and large grain (303, 276, 250, 317).

Key words: Pisumsativum L., Germplasm screening, Agronomic traits, Genetic diversity

Table 1

Diversity analysis of agronomic traits of Pisum sativum L. germplasm resources"

项目
Item
株高
Plant height
(cm)
每果节荚数
Number of pods
perfruit node
分枝数
Number of
branches
荚长
Pod
length (cm)
荚粒数
Number of
pod seeds
荚数
Number of
pods
单株产量
Yield per
plant (g)
百粒重
100-kernel
weight (g)
最小值Minimum 27.60 1.00 1.00 3.74 2.80 7.60 4.10 1.36
最大值Maximum 153.80 4.00 3.00 16.42 8.20 65.00 30.04 35.22
平均值Mean 89.35 2.21 1.78 6.07 5.49 26.53 14.17 17.48
标准偏差SD 22.95 0.32 0.42 1.42 0.92 9.29 4.85 4.83
变异系数Coefficient of variation(%) 25.68 14.41 23.84 23.37 16.80 35.01 34.21 27.64

Table 2

Correlation analysis of main agronomic traits"

性状
Trait
株高
Plant
height
每果节荚数
Number of pods
perfruit node
分枝数
Number of
branches
荚长
Pod
length
荚粒数
Number of
pod seeds
荚数
Number
ofpods
单株产量
Yield per
plant
百粒重
100-kernel
weight
株高Plant height 1.000
每果节荚数Number of pods per fruit node 0.050 1.000
分枝数Number of branches 0.080 0.115* 1.000
荚长Pod length -0.125* -0.224** -0.049 1.000
荚粒数Number ofpod seeds -0.195** -0.020 -0.234** 0.246** 1.000
荚数Number ofpods 0.237** 0.299** 0.298** -0.326** -0.182** 1.000
单株产量Yield per plant 0.157** 0.039 0.178** 0.178** 0.031 0.506** 1.000
百粒重100-kernel weight -0.063 -0.339** -0.021 0.484** -0.147** -0.353** 0.362** 1.000

Table3

Principalcomponentanalysisofmain agronomic traits of Pisum sativum L."

性状
Trait
主成分Principal component
1 2 3
株高Plant height 0.387 0.266 -0.258
每果节荚数
Number of pods per fruit node
0.558 -0.173 0.344
分枝数Number of branches 0.408 0.389 -0.156
荚长Pod length -0.660 0.409 0.255
荚粒数Numberofpod seeds -0.332 -0.244 0.794
荚数Number of pods 0.800 0.326 0.257
单株产量Yield per plant 0.182 0.825 0.401
百粒重100-kernelweight -0.592 0.653 -0.209
特征值Eigenvalue 2.197 1.691 1.175
贡献率Contribution rate (%) 27.460 21.140 14.690
累计贡献率
Cumulative contribution rate (%)
27.460 48.600 63.290

Fig.1

Clus ter diagram of Pisum sativum L. germplasm resources The numbers represent the varieties of Pisum sativum L."

Table 4

Principalcomponentanalysisofmain agronomic traits of Pisum sativum L."

类群
Group
统计参数
Statistical
Parameter
株高
Plant height
(cm)
每果节荚数
Number of pods
perfruit node
分枝数
Number of
branches
荚长
Pod length
(cm)
荚粒数
Number of
pod seeds
荚数
Number
ofpods
单株产量
Yield per
plant (g)
百粒重
100-kernel
weight (g)
A 平均值 50.52 2.16 1.73 6.53 5.70 22.58 13.42 18.57
变异系数 (%) 18.58 15.76 24.97 16.68 20.47 32.45 34.55 31.83
B 平均值 83.53 2.26 1.74 5.86 5.59 25.06 13.11 16.87
变异系数 (%) 9.49 30.58 26.41 21.10 16.46 37.18 34.05 28.43
C 平均值 136.87 2.10 1.67 5.44 4.87 31.37 15.46 16.82
变异系数 (%) 6.95 19.75 30.98 4.98 25.82 10.08 21.12 7.85
D 平均值 104.47 2.22 1.82 6.06 5.39 28.57 14.99 17.47
变异系数 (%) 9.92 12.55 21.73 26.39 14.71 33.06 33.66 25.57

Table 5

Screening of excellent germplasms of Pisum sativum L."

性状
Trait
品种序号
Variety
code
株高
Plant height
(cm)
每果节荚数
Number of pods
per fruit node
分枝数
Number of
branches
荚长
Pod length
(cm)
荚粒数
Number of
pod seeds
荚数
Number of
pods
单株产量
Yield per
plant (g)
百粒重
100-kernel
weight (g)
高秆Longstalk 87 132.0 2.4 2.0 5.42 5.2 33.2 18.102 15.21
148 136.2 2.4 2.0 5.38 4.0 36.4 14.742 16.70
307 141.0 1.4 1.0 5.28 3.4 28.0 10.074 16.63
220 153.8 2.2 2.0 5.28 4.4 28.4 17.334 17.01
高产High yield 82 127.6 2.0 2.0 6.18 5.2 41.8 27.676 20.27
145 110.8 2.0 2.0 5.36 5.2 53.4 28.364 17.65
46 100.0 2.2 1.8 7.22 7.0 36.2 29.532 22.32
114 110.6 2.2 2.0 7.06 4.4 25.8 30.044 24.12
大粒Large grain 303 104.6 1.6 2.0 7.82 6.0 14.4 18.876 30.84
276 42.8 2.0 1.8 6.60 2.8 31.4 17.100 32.33
250 37.8 2.0 2.0 6.18 2.8 15.6 9.496 34.97
317 43.8 1.6 2.0 7.28 4.4 11.2 10.962 35.22
群体平均值Population average 89.35 2.22 1.78 6.07 5.49 26.53 14.17 17.48
[1] 刘荣, 杨涛, 黄宇宁, 等. 豌豆及其野生近缘种种质资源研究进展. 植物遗传资源学报, 2020, 21(6):1415-1423.
doi: 10.13430/j.cnki.jpgr.20200629002
[2] 李明达. 半无叶型豌豆研究现状及发展前景. 农业科技与信息, 2009(5):53-55.
[3] Nadim T, Grégoire A, Marie-Laure P, et al. Genomic tools in pea breeding programs: status and perspectives. Frontiers in Plant Science, 2015, 27(6):1037.
[4] Anna A, ChiaraZ, Carmen L, et al. The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Critical Reviews in Plant Sciences, 2015, 34:1-3.
doi: 10.1080/07352689.2014.897895
[5] Marles MA, Warkentin TD, Bett KE. Genotypic abundance of carotenoids and polyphenolics in the hull of field pea (Pisum sativum L.). Journalof the Scienceof Food Agriculture, 2013, 93(3):463-470.
[6] Yassine M, Imen H, Salem B, et al. Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis, 2018.
[7] 仪登霞, 庞永珍. 我国豌豆生产和育种的现状与问题. 中国草地学报, 2022, 44(1):104-113.
[8] 周俊玲, 张蕙杰. 世界豌豆生产及贸易形势分析. 世界农业, 2015(9):131-135,251.
[9] 李灶福, 王春贵, 高仕兰, 等. 不同播种期对山地食粒豌豆产量及效益的影响. 农业科技通讯, 2020(12):183-184,217.
[10] 颜廷进, 戴双, 邓翠霞, 等. 不同播种时期、栽培模式对豌豆产量的影响. 山东农业科学, 2019, 51(1):72-74.
[11] 钱爱萍, 赵永峰, 牛永岐, 等. 播期对不同熟性豌豆品种生育进程及种子产量的影响. 种子, 2016, 35(6):85-87.
[12] 韩钟英, 赵财, 胡发龙. 箭筈豌豆、 玉米产量对间作和施氮水平的响应. 中国农学通报, 2021, 37(25):11-16.
doi: 10.11924/j.issn.1000-6850.casb2020-0708
[13] 杨明太. 不同玉米密度下玉米间作豌豆的产量表现. 农业科技与信息, 2018(23):26-31,33.
[14] 王燕超. 春箭筈豌豆/燕麦间作对产量和营养成分的影响及作用机理. 兰州:兰州大学, 2021.
[15] 高小丽, 杨文才. 播期、 密度、氮肥对豌豆产量和品质的影响. 西藏农业科技, 2020, 42(4):18-23.
[16] 韩桂军, 梁坤伦, 毛祝新, 等. 磷钾肥配施3个箭筈豌豆牧草的产量与品质. 贵州农业科学, 2017, 45(8):30-33.
[17] 黄栋, 于徐根, 甘兴华, 等. 播种量和施肥对秋冬闲田饲用豌豆草产量的影响. 江西畜牧兽医杂志, 2018(4):34-35.
[18] 朱旭, 胡卫丽, 杨厚勇, 等. 南阳盆地直立型豌豆农艺性状与产量相关性及通径分析. 中国种业, 2022(3):66-71.
[19] 李艳兰, 李灶福, 禹宗红, 等. 烟后食粒豌豆不同播期主要农艺性状与产量的多重分析. 安徽农业科学, 2021, 49(14):34-38.
[20] 万述伟, 宋凤景, 郝俊杰, 等. 271份豌豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2017, 18(1):10-18.
doi: 10.13430/j.cnki.jpgr.2017.01.002
[21] 宗绪晓, 王志刚, 关建平, 等. 豌豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
[22] Yu G C. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics, 2020, 69:e96.
[23] 贺晨帮, 宗绪晓. 豌豆种质资源形态标记遗传多样性分析. 植物遗传资源学报, 2011, 12(1):42-48.
doi: 10.13430/j.cnki.jpgr.2011.01.007
[24] 吕伟, 韩俊梅, 文飞, 等. 不同来源芝麻种质资源的表型多样性分析. 植物遗传资源学报, 2020, 21(1):234-242,251.
doi: 10.13430/j.cnki.jpgr.20191026001
[25] 董博文, 李继东, 郑先波, 等. 山茱萸种质资源表型性状多样性及相关性分析. 经济林研究, 2014, 32(2):163-166.
[26] 李玲, 孙文松. 国内豌豆种质资源的形态多样性分析. 辽宁农业科学, 2010(2):22-25.
[27] 张凡, 刘国涛, 杨春玲. 620份小麦种质资源农艺性状调查及其遗传多样性分析. 山东农业科学, 2022, 54(3):15-21.
[28] 龙珏臣, 张继君, 龚万灼, 等. 重庆地区豌豆(Pisum sativum L.)种质资源收集与多样性分析. 植物遗传资源学报, 2019, 20(1):137-145.
[1] Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64.
[2] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[3] Chen Cuiping, Yan Dianhai, Zhang Shumiao, Zuo Haonan, Gao Sen, Liu Yang. Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers [J]. Crops, 2023, 39(3): 35-42.
[4] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Amount on Yield and Agronomic Traits of Different Gluten Type Wheat Cultivars [J]. Crops, 2023, 39(2): 131-137.
[5] Song Yun, Zhang Xinrui, He Jiaxin, Li Zheng, Sun Zhe, Li Aoxuan, Qiao Yonggang. Genetic Diversity Analysis of Sophora flavescens Ait. Germplasm Resources Based on cpSSR Markers [J]. Crops, 2023, 39(1): 30-37.
[6] Huang Guibin, Guan Yaobing, Niu Yongqi, Zhou Lilei, Zhao Yongfeng. Comprehensive Evaluation of 12 Major Agronomic Traits of 103 Chickpea Germplasm Resources [J]. Crops, 2023, 39(1): 6-13.
[7] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[8] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[9] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[10] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[11] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[12] Lei Lei, Guan Zheyun, Cao Shiliang, Wang Yumin, Lin Chunjing, Peng Bao, Liu Peng, Zhao Limei, Li Zhigang, Zhang Chunbao. Classification of Soybean Heterotic Groups Based on SSR Molecular Markers for Yield-Related Traits [J]. Crops, 2022, 38(4): 54-61.
[13] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[14] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[15] Li Wenlue, Chen Changli, Luo Xiahong, Liu Tingting, An Xia, Jin Guanrong, Zhu Guanlin. Genetic Diversity Analysis of Phenotypic Characteristics of Kenaf Resources in Zhejiang Province [J]. Crops, 2022, 38(1): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!