Crops ›› 2023, Vol. 39 ›› Issue (6): 160-166.doi: 10.16035/j.issn.1001-7283.2023.06.022

Previous Articles     Next Articles

Study on the Effects of Exogenous Jasmonic Acid on Selenium Tolerance and Selenium Accumulation in Pak Choi (Brassica chinensis L.)

Chen Jinping(), Pan Liping, Xing Ying, Liao Qing, Liu Yongxian, Che Jianglü()   

  1. Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural Sciences/ Guangxi Selenium-Rich Agricultural Research Center/Guangxi Selenium-Rich Agricultural Products Engineering Technology Research Center, Nanning 530007, Guangxi, China
  • Received:2022-03-18 Revised:2022-06-07 Online:2023-12-15 Published:2023-12-15

Abstract:

This study examined the effects of varying exogenous jasmonic acid (JA, 50μmol/L, 100μmol/L) concentrations on the tolerance and accumulation of selenium (Se) in pak choi cabbage (Brassica chinensis L.) treated with various selenium (Se) concentrations (4mg/kg Se6+, 10mg/kg Se6+). The results showed that, plants grown in Se-rich soil treatments exhibited Se toxicity, reduced photosynthetic capacity of photosystem (PSII), heavy peroxidization and significant inhibition of shoot biomass. Under Se-rich soil conditions, pak choi cabbage with 100μmol/L JA treatment resisted the effects of Se toxicity. There were significant increases in the effective quantum yield (Fv'/Fm'), electron transport efficiency (ETR), photochemical quenching coefficient (qP), shoot biomass and catalase (CAT) activity, as well as significant reduced non-photochemical quenching coefficient (qN) and malondialdehyde (MDA) content. Additionally, pak choi cabbage cultivated in Se-rich soil and with 100μmol/L JA treatment showed a significant increase in Se content and Se accumulation of shoots. 50μmol/L JA treatment produced varying degrees of Se tolerance dependent on the concentration of soil Se. Pak choi cabbage in 4mg/kg Se6+ treatment showed reductions in cell peroxidation and inhibition of photochemical reaction, though not significantly. While with 10mg/kg Se6+ treatment, there were significant increases in maximum photochemical efficiency (Fv/Fm), Fv'/Fm', ETR, and CAT activity, though not to the degree of the 100μmol/L JA treatment. Application of 100μmol/L exogenous JA on pak choi cabbage can increase Se tolerance and accumulation ability. It is an effective strategy to lessen Se toxicity and enhance crop health in high-Se containing soil.

Key words: Pak choi cabbage, Selenium-rich soil, Jasmonic acid, Chlorophyll fluorescence, Accumulation of selenium

Table 1

The effects of JA treatment on the chlorophyll fluorescence parameters of pak choi plants in Se-enriched soil"

处理Treatment Fv/Fm Fv'/Fm' ETR qP qN
CK 0.821±0.003abc 0.593±0.005a 118.736±7.324b 0.476±0.032b 0.707±0.029cd
T1 0.812±0.004c 0.533±0.017c 89.960±11.282cd 0.401±0.038c 0.780±0.005a
T2 0.829±0.002a 0.542±0.006bc 86.428±7.198cd 0.379±0.030c 0.784±0.004a
T3 0.818±0.005bc 0.593±0.013a 142.935±12.803a 0.574±0.051a 0.696±0.034d
T4 0.802±0.010d 0.502±0.004d 76.123±4.770d 0.360±0.021c 0.787±0.008a
T5 0.823±0.002ab 0.541±0.008bc 98.313±1.721c 0.432±0.014bc 0.767±0.004ab
T6 0.815±0.002bc 0.561±0.025b 119.038±18.318b 0.504±0.065ab 0.737±0.016bc

Fig.1

Effects of JA treatment on MDA content and antioxidant enzymatic activities of pak choi plants in Se-enriched soil Different lowercase letters are significantly difference at P < 0.05 among different treatments; The F-values of Se×JA interaction on MDA, SOD, POD and CAT were 1.560, 2.904, 1.780 and 5.539, respectively, and the interaction influence on CAT activity is significant (P < 0.05)"

Table 2

Effects of JA treatment on biomass, root-shoot ratio, Se content and Se accumulation of pak choi plants in Se-enriched soil"

处理
Treatment
地上部生物量
(g/盆)
Shoot biomass
(g/pot)
根生物量
(g/盆)
Root biomass
(g/pot)
地上部硒含量
Se content of
shoots (mg/kg)
根部硒含量
Se content of
roots (mg/kg)
地上部硒积累量
(μg/盆)
Se accumulation
in shoots (μg/pot)
根部硒积累量
(μg/盆)
Se accumulation
in roots (μg/pot)
根冠比
Root-
shoot
ratio
CK 7.17±0.96a 1.74±0.37ab 0.23±0.04e 0.06±0.02d 1.66±0.21d 0.09±0.02e 0.24±0.02a
T1 5.24±0.29b 1.46±0.19b 15.61±2.44d 9.27±1.26c 81.35±8.54c 13.35±0.22d 0.28±0.02a
T2 5.16±0.69b 1.62±0.31ab 17.99±0.73cd 8.56±0.95c 92.57±9.06c 14.10±4.03d 0.32±0.10a
T3 7.04±1.20a 2.01±0.35a 19.92±0.83c 9.42±2.29c 139.60±18.93b 18.48±1.68c 0.29±0.10a
T4 5.17±0.17b 1.78±0.16ab 29.69±0.73b 15.68±1.40b 153.52±2.23b 27.78±1.30b 0.31±0.03a
T5 6.25±0.66ab 1.35±0.05b 37.60±1.76a 20.55±1.45a 234.54±17.88a 27.76±1.08b 0.22±0.03a
T6 7.14±0.06a 1.75±0.27ab 34.98±2.07a 20.87±1.69a 249.93±16.65a 36.15±2.76a 0.24±0.04a
[1] Sharma S, Bansal A, Dhillon S K, et al. Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant and Soil, 2010, 329:339-348.
doi: 10.1007/s11104-009-0162-3
[2] 王立平, 唐德剑, 沈亚美, 等. 硒的营养缺乏现状及补充方式. 食品工业, 2020, 41(1):339-343.
[3] Winkel L H, Johnson C A, Lenz M, et al. Environmental selenium research: from microscopic processes to global understanding. Environmental Science & Technology, 2012, 46(2):571-579.
doi: 10.1021/es203434d
[4] 李亚妮, 马丽艳, 黄昆仑, 等. 膳食来源中硒的生物利用率的研究进展. 中国食物与营养, 2019, 25(9):5-9.
[5] 钟铭, 吴德, 方正锋, 等. 硒对公猪精液品质的影响及其机理. 动物营养学报, 2010, 22(6):1488-1494.
[6] 袁缨, 郝智慧, 郭东新. 两种来源硒对肉仔鸡体内硒沉积和谷胱甘肽过氧化物酶活性的影响. 中国畜牧杂志, 2002(4):21-22.
[7] 赵萍, 刘笑笑, 王雅, 等. 富硒小麦提取物中硒含量及其抗氧化特性. 食品科学, 2014, 35(15):94-98.
doi: 10.7506/spkx1002-6630-201415019
[8] 李登超, 朱祝军, 徐志豪, 等. 硒对小白菜生长和养分吸收的影响. 植物营养与肥料学报, 2003, 9(3):353-358.
[9] 高柱, 蔡荟梅, 彭传燚, 等. 富硒茶叶中硒的赋存形态研究. 中国食物与营养, 2014, 20(1):31-33.
[10] Broadley M R, White P J, Bryson R J, et al. Biofortification of UK food crops with selenium. The Proceedings of the Nutrition Society, 2006, 65(2):169-181.
[11] Zhu J M, Wang N, Li S, et al. Distribution and transport of selenium in Yutangba, China: impact of human activities. The Science of the Total Environment, 2008, 392(2/3):252-261.
doi: 10.1016/j.scitotenv.2007.12.019
[12] Cui Z W, Huang J, Peng Q, et al. Risk assessment for human health in a seleniferous area, Shuang'an, China. Environmental Science and Pollution Research, 2017, 24(3):17701-17710.
doi: 10.1007/s11356-017-9368-8
[13] Sors T G, Ellis D R, Na G N, et al. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. The Plant Journal, 2005, 42(6):785-797.
doi: 10.1111/tpj.2005.42.issue-6
[14] Hawrylak-Nowak B, Matraszek R, Pogorzelec M. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum, 2015, 37(2):41.
doi: 10.1007/s11738-015-1788-9
[15] Li J, Liang D L, Qin S Y, et al. Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environmental Science and Pollution Research, 2015, 22(14):11076-11086.
doi: 10.1007/s11356-015-4344-7
[16] Takeuchi K, Gyohda A, Tominaga M, et al. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant and Cell Physiology, 2011, 52(9):1686-1696.
doi: 10.1093/pcp/pcr105 pmid: 21828106
[17] 张盛楠, 黄亦玟, 陈世宝, 等. 不同外源物质对镉砷复合污染胁迫下油菜生理指标和镉砷积累的影响. 生态学杂志, 2020, 39(7):2214-2222.
[18] Polon-Smits E A H. Selenium in plants. Cham, Switzerland: Springer International Publishing, 2017.
[19] Wang D, Zhou F, Yang W X, et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 2017, 182:284-292.
doi: S0045-6535(17)30709-9 pmid: 28500973
[20] Zhang M, Tang S H, Huang X, et al. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany, 2014, 107:39-45.
doi: 10.1016/j.envexpbot.2014.05.005
[21] Dai Z H, Rizwan M, Gao F, et al. Nitric oxide alleviates selenium toxicity in rice by regulating antioxidation, selenium uptake, speciation and gene expression. Environmental Pollution, 2020, 257:113540.
doi: 10.1016/j.envpol.2019.113540
[22] Mostofa M G, Rahman M M, Siddiqui M N, et al. Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. Journal of Hazardous Materials, 2020, 394:122572.
doi: 10.1016/j.jhazmat.2020.122572
[23] Hayat S, Ahmad A, Alyemeni M N, et al. Salicylic Acid. Cham, Switzerland: Springer International Publishing, 2013.
[24] 金微微, 王炎, 张会慧, 等. 茉莉酸甲酯对干旱及复水条件下烤烟幼苗叶绿素荧光特性的影响. 应用生态学报, 2011, 22(12):3157-3162.
[25] Sirhindi G, Mushtaq R, Gill S S, et al. Jasmonic acid and methyl jasmonate modulate growth, photosynthetic activity and expression of photosystem II subunit genes in Brassica oleracea L.. Scientific Reports, 2020, 10(1):9322.
doi: 10.1038/s41598-020-65309-1 pmid: 32518304
[26] Qiu Z B, Guo J L, Zhu A, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety, 2014, 104:202-208.
doi: 10.1016/j.ecoenv.2014.03.014 pmid: 24726929
[27] Kang D J, Seo Y J, Lee J D, et al. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt- tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science, 2005, 191:273-282.
doi: 10.1111/jac.2005.191.issue-4
[28] Jung C, Lyou S H, Yeu S, et al. Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 2007, 26(7):1053-1063.
doi: 10.1007/s00299-007-0311-1
[29] Kamran M, Wang D, Alhaithloul H, et al. Jasmonic acid- mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental Safety, 2021, 208:111758.
doi: 10.1016/j.ecoenv.2020.111758
[30] 戴志华. 水稻对硒的吸收转化及调控机理研究. 武汉:华中农业大学, 2020.
[31] 周维, 魏成熙, 韦伟. 茉莉酸甲酯对富硒春茶硒含量及品质的影响. 山地农业生物学报, 2012, 31(6):514-518.
[32] White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, 2009, 182(1):49-84.
doi: 10.1111/nph.2009.182.issue-1
[33] Kim H S, Juvik J A. Effect of selenium fertilization and methyl jasmonate treatment on glucosinolate accumulation in broccoli florets. Journal of the American Society for Horticultural Science, 2011, 136(4):239-246.
doi: 10.21273/JASHS.136.4.239
[34] Guo J, Chen Y Z, Li M S, et al. Does myc2 really play a negative role in jasmonic acid-induced indolic glucosinolate biosynthesis in arabidopsis thaliana?. Russian Journal of Plant Physiology, 2013, 60(1):100-107.
doi: 10.1134/S1021443713010020
[1] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[2] Yang Cheng, Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong, Shao Yunhui, Fang Baoting, Wang Hanfang. Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence [J]. Crops, 2022, 38(1): 154-160.
[3] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[4] Yang Lei, Jin Yandi, Liu Houjun. Effects of Iron, Cadmium and Their Interaction on the Primary Reaction of Photosynthesis in Rice [J]. Crops, 2021, 37(4): 144-151.
[5] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[6] Wu Qiong, Ding Kaixin, Yu Minglong, Huang Wenting, Zuo Guanqiang, Feng Naijie, Zheng Dianfeng. Effects of New Plant Growth Regulator B2 on Photosynthetic Fluorescence Characteristics and Yield of Maize [J]. Crops, 2020, 36(5): 174-181.
[7] Jing Peipei,Ren Hongru,Yang Hongjian,Dai Qigen. Effects of Saline Stress on Leaf Photosynthesis Characteristics and Grain Yield of Two Rice Cultivars (Lines) [J]. Crops, 2020, 36(1): 67-75.
[8] Shi Liran,Hao Hongbo,Cui Haiying,Li Mingzhe. Effects of Shading on Photosynthetic Characteristics and Rapid Chlorophyll Fluorescence Kinetic Characteristics of Foxtail Millet [J]. Crops, 2019, 35(5): 125-128.
[9] Wang Jianan,Li Xiaoyan,Wei Shimei,Zhao Huijie,Zhao Mingqi,Wang Yuexia. Regulation of Exogenous 5-Aminolevulinic Acid on Photosynthesis and D1 Protein of Wheat Seedlings under Drought Stress [J]. Crops, 2018, 34(5): 121-126.
[10] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[11] Ying Chen,Manli Zhang,Xianping Liu,Guijin Dai,Shougui Hou. Effects of Biochar on Chlorophyll Fluorescence at Full Heading Stage and Yield Components of Rice [J]. Crops, 2016, 32(3): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!