Crops ›› 2024, Vol. 40 ›› Issue (1): 16-22.doi: 10.16035/j.issn.1001-7283.2024.01.003

Previous Articles     Next Articles

Progress in Mechanism of Herbicide Resistance and Breeding of Sunflower

Lü Zengshuai(), Dong Hongye, Wang Peng, Duan Wei, Liu Shengli(), Liu Yantao()   

  1. Institute of Crop Research, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China
  • Received:2022-08-01 Revised:2023-09-07 Online:2024-02-15 Published:2024-02-20
  • Contact: Liu Shengli,Liu Yantao E-mail:lvzengshuai@163.com;495437597@qq.com;519392988@qq.com

Abstract:

Sunflower, an important characteristic economic crop in China, weeds seriously restrict its industrial development, and herbicides are widely used in production as the simplest and most efficient chemical control method. In this paper, the targeted and non-targeted mechanisms of herbicide resistance in sunflower were introduced. The research progress of targeted and non-targeted herbicide resistance breeding were summarized in domestic and abroad, and the application of herbicide resistance in hybrid engineering-oriented seed production, so as to provide theoretical guidance for current research and application of herbicide resistance breeding in sunflower and promote the development of sunflower industry towards green and high quality.

Key words: Sunflower, Herbicide, Resistance mechanism, Breeding, Progress

[53] Sala C A, Bulos M, Echarte A M. Genetic analysis of an induced mutation conferring imidazolinone resistance in sunflower. Crop Science, 2008, 48(5):1817-1822.
doi: 10.2135/cropsci2007.11.0625
[54] Weston B, Pfenning M, Perez-Brea J, et al. Yield and oil improvements in clearfield® plus sunflowers. Mar del Plata- Balcarce,Argentina, 2012.
[55] Streit L G. DuPont™ ExpressSun™ herbicide technology in sunflower. Mar del Plata-Balcarce,Argentina, 2012.
[56] Lukomets V M, Trunova M V, Demurin Y N. Modern trends in breeding and genetic improvement of sunflower varieties and hybrids at VNIIMK. Vavilov Journal of Genetics and Breeding, 2021, 25(4):388-393.
doi: 10.18699/VJ21.05
[57] 白全江, 云晓鹏, 杜磊, 等. 抗除草剂新品种防除向日葵列当用药技术研究. 北方农业学报, 2018, 46(4):77-81.
[58] 肖国樱. 一种不育系解决机械化制种和不育系混杂的设想与实践. 作物研究, 2012, 26(5):527-528.
[59] 关周博, 董育红, 田建华, 等. 非转基因抗除草剂油菜细胞质雄性不育系的选育及应用. 中国农学通报, 2020, 36(26):9-13.
doi: 10.11924/j.issn.1000-6850.casb20200100017
[60] 杨晓杰, 谢德意, 赵元明, 等. 新型抗除草剂棉花不育系Yu98-8 A1的培育及鉴定. 植物遗传资源学报, 2013, 14(4):723-727.
doi: 10.13430/j.cnki.jpgr.2013.04.023
[61] 李慧英, 孙敏, 刘壮, 等. 油用向日葵抗除草剂亲本材料选育研究. 宁夏农林科技, 2015, 56(7):55-56.
[62] Jhansi Rani S, Usha R. Transgenic plants: Types, benefits, public concerns and future. Journal of Pharmacy Research, 2013, 6(8):879-883.
doi: 10.1016/j.jopr.2013.08.008
[63] Neskorodov Y B, Rakitin A L, Kamionskaya A M, et al. Developing phosphinothricin-resistant transgenic sunflower (Helianthus annuus L.) plants. Plant Cell,Tissue and Organ Culture (PCTOC), 2010, 100(1):65-71.
doi: 10.1007/s11240-009-9620-0
[64] 张玉池, 王晓蕾, 徐文蓉, 等. 国内外抗除草剂基因专利的分析. 杂草学报, 2017, 35(2):1-22.
[1] Pal D. Chapter 130 Sunflower (Helianthus annuus L.) seeds in health and nutrition//Nuts and Seeds in Health and Disease Prevention. San Diego: Academic Press, 2011:1097-1105.
[2] 赵贵兴, 钟鹏, 陈霞, 等. 中国向日葵产业发展现状及对策. 农业工程, 2011, 1(2):42-45.
[65] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4):347-355.
doi: 10.1038/nbt.2842 pmid: 24584096
[66] Lin C S, Hsu C T, Yuan Y H, et al. DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. Plant Physiology, 2022, 188(4):1917-1930.
doi: 10.1093/plphys/kiac022
[67] Zhang R, Liu J X, Chai Z Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5):480-485.
doi: 10.1038/s41477-019-0405-0 pmid: 30988404
[68] Chilcoat D, Liu Z B, Sander J. Use of CRISPR/Cas9 for crop improvement in maize and soybean. Progress in Molecular Biology and Translational Science, 2017, 149:27-46.
doi: S1877-1173(17)30065-0 pmid: 28712499
[69] Sun Y W, Zhang X, Wu C Y, et al. Engineering herbicide- resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 2016, 9(4):628-631.
doi: 10.1016/j.molp.2016.01.001
[70] Shimatani Z, Kashojiya S, Takayama M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas 9 cytidine deaminase fusion. Nature Biotechnology, 2017, 35(5):441-443.
doi: 10.1038/nbt.3833 pmid: 28346401
[71] Wu J, Chen C, Xian G, et al. Engineering herbicide resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnology Journal, 2020, 18(9):1857-1859.
doi: 10.1111/pbi.v18.9
[3] 中华人民共和国农业农村部. 向日葵占比油料播种面积、产量及比重. (2022-03-02)[2022-08-01].http://zdscxx.moa.gov.cn:8080/nyb/pc/sourceArea.jsp.
[4] Blamey F P C, Zollinger R K, Schneiter A A. Sunflower Production and Culture. Madison,Wisconsin, USA:Agronomy Monographs, 1997:595-670.
[5] 崔超, 王靖, 王海伟, 等. 不同列当寄生严重度对向日葵产量形成及生理特性的影响. 中国油料作物学报, 2016, 38(4):518-523.
doi: 10.7505/j.issn.1007-9084.2016.04.017
[6] 吴文龙, 姜翠兰, 黄兆峰, 等. 我国向日葵列当发生危害现状调查. 植物保护, 2020, 46(3):266-273.
[7] 张一宾, 顾林玲. 近年来全球向日葵种植面积及农药使用市场与品种. 现代农药, 2018, 17(1):16-18.
[8] Murphy B P, Tranel P J. Target-Site mutations conferring herbicide resistance. Plants, 2019, 8(10):382.
doi: 10.3390/plants8100382
[9] Powles S B, Yu Q. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61(1):317-347.
doi: 10.1146/arplant.2010.61.issue-1
[10] Heap I. Global perspective of herbicide-resistant weeds. Pest Management Science, 2014, 70(9):1306-1315.
doi: 10.1002/ps.3696 pmid: 24302673
[11] Sammons R D, Gaines T A. Glyphosate resistance: State of knowledge. Pest Management Science, 2014, 70(9):1367-1377.
pmid: 25180399
[12] Tranel P J, Wright T R. Review resistance of weeds to ALS- inhibiting herbicides: What have we learned. Weed Science, 2002, 50(6):700-712.
doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2
[13] Yu Q, Powles S B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Management Science, 2014, 70(9):1340-1350.
doi: 10.1002/ps.3710 pmid: 24338926
[14] Breccia G, Vega T, Felitti S A, et al. Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide. Plant Science, 2013, 208:28-33.
doi: 10.1016/j.plantsci.2013.03.008 pmid: 23683926
[15] Bernasconi P, Woodworth A R, Rosen B A, et al. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Journal of Biological Chemistry, 1995, 270(29):17381-17385.
doi: 10.1074/jbc.270.29.17381 pmid: 7615543
[16] Jander G, Baerson S R, Hudak J A, et al. Ethylmethanesulfonate saturation mutagenesis in arabidopsis to determine frequency of herbicide resistance. Plant Physiology, 2003, 131(1):139-146.
doi: 10.1104/pp.102.010397 pmid: 12529522
[17] Brosnan J T, Vargas J J, Breeden G K, et al. A new amino acid substitution (Ala-205-Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides. Planta, 2016, 243(1):149-159.
doi: 10.1007/s00425-015-2399-9 pmid: 26353912
[18] Kolkman J M, Slabaugh M B, Bruniard J M, et al. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theoretical and Applied Genetics, 2004, 109(6):1147-1159.
pmid: 15309298
[19] Yang Q, Deng W, Wang S, et al. Effects of resistance mutations of Pro197, Asp376 and Trp574 on the characteristics of acetohydroxyacid synthase (AHAS) isozymes. Pest Management Science, 2018, 74(8):1870-1879.
doi: 10.1002/ps.4889 pmid: 29424952
[20] Sala C A, Bulos M, Echarte M, et al. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theoretical and Applied Genetics, 2008, 118(1):105-112.
doi: 10.1007/s00122-008-0880-6 pmid: 18784913
[21] Yu Q, Han H, Vila-Aiub M M, et al. AHAS herbicide resistance endowing mutations: Effect on AHAS functionality and plant growth. Journal of Experimental Botany, 2010, 61(14):3925-3934.
doi: 10.1093/jxb/erq205 pmid: 20627897
[22] Yu Q, Han H, Powles S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science, 2008, 64(12):1229-1236.
doi: 10.1002/ps.v64:12
[23] Uchino A, Ogata S, Kohara H, et al. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biology and Management, 2007, 7(2):89-96.
doi: 10.1111/wbm.2007.7.issue-2
[24] Intanon S, Perez-Jones A, Hulting A G, et al. Multiple Pro 197 ALS substitutions endow resistance to ALS inhibitors within and among mayweed chamomile populations. Weed Science, 2011, 59(3):431-437.
doi: 10.1614/WS-D-10-00146.1
[25] Sala C A, Bulos M. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theoretical and Applied Genetics, 2012, 124(2):355-364.
doi: 10.1007/s00122-011-1710-9 pmid: 21959907
[26] Gabriela B, Laura G, Altieri E, et al. Effect of Ahasl1-1 and Ahasl1-4alleles on herbicide resistance and its associated dominance in sunflower. Pest Management Science, 2019, 75(4):935-941.
doi: 10.1002/ps.5197 pmid: 30187639
[27] 萨拉C A, 艾查特A M, 布罗斯M, 等.抗除草剂的向日葵植物、编码抗除草剂的乙酰羟酸合酶大亚基蛋白的多核苷酸和使用方法:200680032210.2. 2008-10-15.
[28] Xiao P, Liu Y, Cao Y. Overexpression of G10-EPSPS in soybean provides high glyphosate tolerance. Journal of Integrative Agriculture, 2019, 18(8):1851-1858.
doi: 10.1016/S2095-3119(18)62124-0
[29] Janel L H, Riggins C W, Steckel L E, et al. The EPSPS Pro106Ser substitution solely accounts for glyphosate resistance in a goosegrass (Eleusine indica) population from Tennessee, United States. Journal of Integrative Agriculture, 2016, 15(6):1304-1312.
doi: 10.1016/S2095-3119(15)61220-5
[30] Patterson E L, Pettinga D J, Ravet K, et al. Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. The Journal of Heredity, 2018, 109(2):117-125.
doi: 10.1093/jhered/esx087
[31] Vijay S, Luke E, Josh M, et al. First case of glyphosate resistance in weedy sunflower (Helianthus annuus). Pest Management Science, 2020, 76(11):3685-3692.
doi: 10.1002/ps.5917 pmid: 32419329
[32] Jin M, Chen L, Deng X W, et al. Development of herbicide resistance genes and their application in rice. The Crop Journal, 2022, 10(1):26-35.
doi: 10.1016/j.cj.2021.05.007
[33] Li J B, Peng Q, Han H P, et al. Glyphosate resistance in Tridax procumbens via a Novel EPSPS Thr-102-Ser substitution. Journal of Agricultural and Food Chemistry, 2018, 66(30):7880-7888.
doi: 10.1021/acs.jafc.8b01651
[34] Hasanuzzaman M, Nahar K, Alam M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14 (5):9643-9684.
doi: 10.3390/ijms14059643 pmid: 23644891
[35] Breccia G, Gil M, Vega T, et al. Contribution of non-target-site resistance in imidazolinone-resistant Imisun sunflower. Bragantia, 2017, 76(4):536-542.
doi: 10.1590/1678-4499.2016.336
[36] Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Management Science, 2013, 69(2):176-187.
doi: 10.1002/ps.3318 pmid: 22614948
[37] Jugulam M, Shyam C. Non-Target-Site resistance to herbicides: Recent developments. Plants (Basel), 2019, 8(10):417.
[38] Gaines T A, Duke S O, Morran S, et al. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295(30):10307-10330.
doi: 10.1074/jbc.REV120.013572 pmid: 32430396
[39] Piasecki C, Yang Y, Benemann D P, et al. Transcriptomic analysis identifies new non-target site glyphosate-resistance genes in Conyza bonariensis. Plants, 2019, 8(6):157.
doi: 10.3390/plants8060157
[40] Hagel J M, Facchini P J. Biochemistry and occurrence of O- demethylation in plant metabolism. Frontiers in Physiology, 2010, 1:1-14.
[41] Yuan J S, Tranel P J, Stewart C N. Non-target-site herbicide resistance: A family business. Trends in Plant Science, 2007, 12 (1):6-13.
doi: 10.1016/j.tplants.2006.11.001 pmid: 17161644
[42] Dobrinka B, Remans T, Vassilev A, et al. Possible involvement of glutathione S-transferases in imazamox detoxification in an imidazolinone-resistant sunflower hybrid. Journal of Plant Physiology, 2018, 221:62-65.
doi: S0176-1617(17)30297-3 pmid: 29247888
[43] Bruniard J M, Miller J F. Inheritance of imidazolinone herbicide resistance in sunflower. Helia, 2001, 35(24):11-16.
[44] Mercedes G, Tatiana V, Silvina F, et al. Characterization of non- target-site mechanisms in imidazolinone-resistant sunflower by RNA-seq. Helia (Novi Sad), 2018, 41(69):267-278.
[45] Kaspar M, Grondona M, Leon A, et al. Selection of a sunflower line with multiple herbicide tolerance that is reversed by the P 450 inhibitor malathion. Weed Science, 2011, 59(2):232-237.
doi: 10.1614/WS-D-10-00120.1
[46] Tatiana V, Mercedes G, Gabriela M, et al. Stress response and detoxification mechanisms involved in non-target-site herbicide resistance in sunflower. Crop Science, 2020, 60(4):1809-1822.
doi: 10.1002/csc2.v60.4
[47] Choe E, Williams M M. Expression and comparison of sweet corn CYP81A9s in relation to nicosulfuron sensitivity. Pest Management Science, 2020, 76(9):3012-3019.
doi: 10.1002/ps.v76.9
[48] Shin K, Yuko Y, Rintaro S, et al. Identification of a cytochrome P 450 hydroxylase, CYP81E22, as a causative gene for the high sensitivity of soybean to herbicide bentazon. Theoretical and Applied Genetics, 2020, 133(7):2105-2115.
doi: 10.1007/s00122-020-03580-6 pmid: 32200415
[49] Gregory N T, Marina N, Jack C M, et al. The P450 gene CYP749A16 is required for tolerance to the sulfonylurea herbicide trifloxysulfuron sodium in cotton (Gossypium hirsutum L.). BMC Plant Biology, 2018, 18(1):186.
doi: 10.1186/s12870-018-1414-2 pmid: 30200872
[50] Dong H, Huang Y, Wang K. The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes, 2021, 12(6):912.
doi: 10.3390/genes12060912
[51] Sudianto E, Song B K, Neik T X, et al. Clearfield® rice: Its development, success, and key challenges on a global perspective. Crop Protection, 2013, 49:40-51.
doi: 10.1016/j.cropro.2013.02.013
[52] Miller J F, Al Khatib K,. Registration of two oilseed sunflower genetic stocks, SURES‐1 and SURES‐2 resistant to tribenuron herbicide. Crop Science, 2004, 44(3):1037-1038.
doi: 10.2135/cropsci2004.1037
[1] Du Ming, Wang Ahong, Feng Qi, Fang Yu. Development and Challenge of Crop Breeding by Design System in China [J]. Crops, 2024, 40(1): 1-7.
[2] Du Chao, Li Jun, Wang Gang, Wu Xuerui, Ren Zhiyuan, Zhang Junfeng, Bao Haizhu, Wen Aiqing. Effects of High Ridge Mulching Drip Irrigation on the Growth and Water Use of Sunflower in Moderate Saline-Alkali Land in Hetao Irrigation Region [J]. Crops, 2024, 40(1): 111-116.
[3] Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10.
[4] Wu Sheng, Duan Yu, Zhang Tingting, An Hao, Zhang Jun, Liang Junmei, Zhang Sheng. Relationships between Dry Matter Accumulation, Transport and Yield of Confectionary Sunflower and Response to Water and Nitrogen Interactions [J]. Crops, 2023, 39(6): 243-251.
[5] Li Hepeng, Zhang Yunhua, Meng Qinglin, Ma Ligong, Yu Hongtao, Li Haiyan, Li Yichu, Liu Jia, Shi Fengmei, Yang Fan, Liu Liang. Screening of Inducers for Sunflower Sclerotinia sclerotiorum and Application of Hypersensitive Protein [J]. Crops, 2023, 39(6): 257-260.
[6] Pei Chunling, Gu Yongzhe, Fu Jiaqi, Chao Shouwei, Lu Qian, Qiu Lijuan. Study on the Rapid Generation-Adding Technology of Huang-Huai-Hai Summer Soybean in Hainan [J]. Crops, 2023, 39(6): 35-40.
[7] Ling Yibo, Wang Binjie, Hu Yimin, Heinar·Madithermic mann, Chen Nianlai. Responses of Dry Matter Translocation and Yield Formation to Planting Density and Row Spacing of Sunflower [J]. Crops, 2023, 39(5): 197-203.
[8] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[9] Zhu Kongyan, Han Shengcai, Zhao Rong, Wen Yujie, Hu Haochi, Qiao Yimin, Lu Jiafeng, Cao Kai, Xu Zhenghan, Bao Haizhu, Gao Julin. Isolation and Identification of Endophytes from Sunflower Seeds [J]. Crops, 2023, 39(5): 280-284.
[10] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[11] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[12] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[13] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[14] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
[15] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!