Crops ›› 2024, Vol. 40 ›› Issue (2): 178-188.doi: 10.16035/j.issn.1001-7283.2024.02.022

Previous Articles     Next Articles

Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice

Xiao Min(), Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie()   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2023-01-30 Revised:2023-03-20 Online:2024-04-15 Published:2024-04-15

Abstract:

In order to investigate the effects of P fertilizer management on the yield and nitrogen, phosphorus and potassium uptake and utilization of double-cropping rice, Xiangzaoxian 45 (early rice) and Taiyou 553 (late rice) were used as materials to carry out the machine planting test under three phosphorus application levels (45 kg/ha, P45; 75 kg/ha P75; 105 kg/ha, P105) and two application periods (S1: full base fertilizer; S2: basal fertilizer:ear fertilizer = 2:1). The results showed that the increase of P application rate could increase the dry matter accumulation of rice and significantly affect the yield and its components, but the application period had no significant effect. There was a certain interaction effect between P application rate and application period, and the yield of early and late rice were significantly higher under P75 treatment, the highest in early rice was P75S1 treatment, and the highest in late rice was P75S2 treatment. With the increase of phosphorus application rate, phosphorus absorption efficiency and utilization rate of phosphorus fertilizer decreased significantly, nitrogen and potassium absorption and absorption efficiency increased significantly in early and late rice, but nitrogen and potassium utilization efficiency decreased significantly, while partial productivity of nitrogen and potassium fertilizer increased first and then decreased, and P75 treatment was the highest. Nitrogen, phosphorus and potassium absorption efficiency of S1 treatment were significantly higher in early rice, while it was opposite in late rice. It can be seen that rational application of P fertilizer can significantly improve rice yield and nutrient absorption and utilization efficiency, and the effect of 75 kg/ha P fertilizer application was the best. Application of phosphorus fertilizer in early season will significantly increase the available phosphorus content in late season soil, so it is better to apply single base fertilizer in early rice, while it is better to apply base fertilizer:ear fertilizer = 2:1 in late rice.

Key words: Double-cropping rice, Phosphate fertilizer management, Yield components, Nutrient uptake and utilization

Table 1

Basic fertility of soil tested"

年份
Year
季别
Season
全氮
Total nitrogen
(g/kg)
全磷
Total phosphorus
(g/kg)
全钾
Total potassium
(g/kg)
碱解氮
Alkali-hydrolyzed
nitrogen (mg/kg)
有效磷
Available
phosphorus (mg/kg)
速效钾
Available potassium
(mg/kg)
pH
2021 早稻 1.14 0.54 12.66 219.80 13.47 240.00 7.15
晚稻 1.28 0.60 12.34 189.00 18.91 260.00 7.17
2022 早稻 0.79 0.37 11.98 141.58 7.79 170.00 7.19
晚稻 0.81 0.39 12.01 161.00 8.02 180.00 7.21

Table 2

Test treatments and codes kg/hm2"

处理序号
Treatment
number
处理
Treatment
磷肥施用量
Amount of
phosphate
fertilizer
分时期施用量
Application dosage
in different periods
基肥
Base fertilizer
穗肥
Ear fertilizer
1 P0 0 0 0
2 P45S1 45 45 0
3 P45S2 45 30 15
4 P75S1 75 75 0
5 P75S2 75 50 25
6 P105S1 105 105 0
7 P105S2 105 70 35

Table 3

Dry matter accumulation of double-cropping rice under different phosphate fertilizer treatments in 2021 t/hm2"

处理
Treatment
早稻Early rice 晚稻Late rice
分蘖盛期
Peak tillering stage
齐穗期
Full head stage
成熟期
Maturity stage
分蘖盛期
Peak tillering stage
齐穗期
Full head stage
成熟期
Maturity stage
P45S1 1.46b 7.43c 9.62c 1.78c 7.93c 13.86c
P45S2 1.43b 7.22c 9.90c 1.71c 7.86c 14.03c
P75S1 1.59a 8.78a 11.70a 1.94b 8.86b 14.29bc
P75S2 1.54a 8.21b 10.95b 1.91b 9.63a 14.81ab
P105S1 1.60a 8.85a 11.80a 1.94b 9.68a 14.22c
P105S2 1.53ab 8.64a 11.52a 2.23a 9.92a 14.96a
P0 1.40b 6.71c 8.95c 1.65d 7.43d 12.30b
$\bar{P45}$ 1.45b 7.33b 9.76b 1.75c 7.90c 13.95a
$\bar{P75}$ 1.57a 8.50a 11.33a 1.93b 9.25b 14.55a
$\bar{ P105}$ 1.57a 8.75a 11.66a 2.09a 9.80a 14.59a
$\bar{S1}$ 1.55a 8.02a 11.04a 1.89a 8.82a 14.12a
$\bar{S2}$ 1.50a 8.35a 10.79a 1.95a 9.14a 14.60a

Table 4

Dry matter accumulation of double-cropping rice under different phosphorus fertilizer treatments in 2022 t/hm2"

处理
Treatment
早稻Early rice 晚稻Late rice
分蘖盛期
Peak tillering stage
齐穗期
Full head stage
成熟期
Maturity stage
分蘖盛期
Peak tillering stage
齐穗期
Full head stage
成熟期
Maturity stage
P45S1 1.14c 7.80b 10.53b 1.58e 9.03c 14.26b
P45S2 1.16bc 7.20c 9.14c 1.69d 8.73c 14.50b
P75S1 1.19bc 8.05ab 11.74a 2.14b 9.30b 14.86ab
P75S2 1.15c 7.26c 10.85b 2.38a 9.94a 15.26a
P105S1 1.43a 8.30a 11.79a 1.90c 9.63ab 14.54ab
P105S2 1.22b 7.91ab 10.96b 2.06b 9.91a 14.94a
P0 0.85c 6.41c 8.63c 1.4d 7.91c 12.93b
$\bar{P45}$ 1.15b 7.50b 9.84b 1.64c 8.88b 14.38a
$\bar{P75}$ 1.17b 7.66b 11.30a 2.26a 9.62a 15.06a
$\bar{ P105}$ 1.33a 8.11a 11.38a 1.98b 9.77a 14.74a
$\bar{S1}$ 1.25a 8.05a 11.35a 1.87b 9.32a 14.55a
$\bar{S2}$ 1.18b 7.46b 10.32b 2.04a 9.53a 14.90a

Table 5

Yield and its components of early rice under different phosphate fertilizer treatments in 2021"

处理
Treatment
有效穗数
Effective panicle number
(×106/hm2)
穗粒数
Number of grains
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(t/hm2)
实际产量
Actual yield
(t/hm2)
P45S1 4.55ab 87.91c 77.73a 26.71a 8.30bc 7.83bc
P45S2 4.34bc 91.26bc 76.91a 26.67a 8.12c 7.76c
P75S1 4.59a 93.47ab 78.76a 26.41a 8.92a 8.73a
P75S2 4.49ab 95.36ab 76.43a 26.20a 8.57ab 8.13b
P105S1 4.35bc 94.87ab 77.82a 26.08a 8.38bc 7.99bc
P105S2 4.24c 97.53a 76.86a 26.10a 8.30bc 7.89bc
P0 3.94c 85.69b 81.55a 26.51a 7.30c 6.98c
$\bar{P45}$ 4.45a 89.59b 77.32b 26.69a 8.23b 7.80b
$\bar{P75}$ 4.54a 94.42a 77.60b 26.31a 8.75a 8.43a
$\bar{ P105}$ 4.30b 96.20a 77.34b 26.09a 8.35b 7.94b
$\bar{S1}$ 4.50a 92.08a 78.10a 26.40a 8.54a 8.18a
$\bar{S2}$ 4.36a 94.72a 76.73a 26.32a 8.34a 7.93a

Table 6

Yield and its components of early rice under different phosphorus fertilizer treatments in 2022"

处理
Treatment
有效穗数
Effective panicle number
(×106/hm2)
穗粒数
Number of grains
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(t/hm2)
实际产量
Actual yield
(t/hm2)
P45S1 4.75bc 79.86b 74.02bc 26.16a 7.35cd 7.09bc
P45S2 4.94ab 78.53b 70.97c 26.17a 7.20d 6.99c
P75S1 5.05a 79.34b 78.29a 26.03a 8.16a 7.98a
P75S2 4.86abc 78.95b 76.78ab 26.27a 7.74bc 7.27bc
P105S1 4.75bc 84.41a 76.32ab 26.22a 8.03ab 7.41b
P105S2 4.68c 86.10a 73.82bc 26.09a 7.75bc 7.28bc
P0 4.35c 78.79b 77.28a 25.91a 6.86c 6.47c
$\bar{P45}$ 4.85a 79.20b 72.50b 26.17a 7.28b 7.04b
$\bar{P75}$ 4.96a 79.15b 77.54a 26.15a 7.95a 7.63a
$\bar{ P105}$ 4.56b 84.51a 75.08ab 26.16a 7.56b 7.35b
$\bar{S1}$ 4.85a 81.20a 76.21a 26.14a 7.85a 7.49a
$\bar{S2}$ 4.83a 81.19a 73.85a 26.18a 7.58a 7.18a

Table 7

Yield and its components of late rice under different phosphate fertilizer treatments in 2021"

处理
Treatment
有效穗数
Effective panicle number
(×106/hm2)
穗粒数
Number of grains
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(t/hm2)
实际产量
Actual yield
(t/hm2)
P45S1 4.64a 138.18b 64.52bc 23.99a 9.92c 9.67c
P45S2 4.57a 137.46b 66.99ab 24.20a 10.18bc 9.96bc
P75S1 4.54a 137.70b 68.00a 24.24a 10.30b 10.08b
P75S2 4.59a 141.90ab 67.50a 24.32a 10.70a 10.51a
P105S1 4.53a 146.92a 63.52c 23.88a 10.10bc 9.92bc
P105S2 4.54a 145.82a 64.62bc 23.76a 10.16bc 9.98bc
P0 4.27b 133.11c 68.24a 24.40a 9.46c 9.22c
$\bar{P45}$ 4.61a 137.82bc 65.76ab 24.10a 10.05b 9.82b
$\bar{P75}$ 4.57a 139.80b 67.75a 24.28a 10.50a 10.30a
$\bar{ P105}$ 4.54a 146.37a 64.07b 23.82a 10.13b 9.95b
$\bar{S1}$ 4.57a 140.93a 65.35a 24.04a 10.11a 9.89a
$\bar{S2}$ 4.57a 141.73a 66.37a 24.09a 10.35a 10.15a

Table 8

Yield and its components of late rice under different phosphorus fertilizer treatments in 2022"

处理
Treatment
有效穗数
Effective panicle number
(×106/hm2)
穗粒数
Number of grains
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(t/hm2)
实际产量
Actual yield
(t/hm2)
P45S1 4.76ab 163.57a 54.32b 23.62a 9.99c 9.52c
P45S2 4.95a 157.65b 55.64ab 23.70a 10.29bc 9.67c
P75S1 4.75ab 160.14ab 57.00ab 23.98a 10.40ab 10.01bc
P75S2 4.70b 165.33a 57.93a 23.87a 10.74a 10.54a
P105S1 4.81ab 161.62ab 54.29b 23.83a 10.06bc 9.97bc
P105S2 4.69b 163.82a 57.73a 23.72a 10.52ab 10.18ab
P0 4.43b 156.06a 57.69a 23.94a 9.54c 9.24c
$\bar{P45}$ 4.86a 160.61a 54.98a 23.66a 10.14b 9.60b
$\bar{P75}$ 4.73a 162.74a 57.47a 23.93a 10.57a 10.28a
$\bar{ P105}$ 4.75a 162.72a 56.01a 23.78a 10.29ab 10.08ab
$\bar{S1}$ 4.77a 161.78a 55.20a 23.81a 10.15a 9.83a
$\bar{S2}$ 4.78a 162.27a 57.10a 23.76a 10.52a 10.13a

Table 9

Accumulation and absorption efficiency of nitrogen, phosphorus and potassium in double-cropping rice under different phosphorus fertilizer treatments in 2021"

季别
Season
处理
Treatment
氮素吸收总量
Total nitrogen
absorption
(kg/hm2)
氮素吸收效率
Nitrogen absorption
efficiency
(kg/kg)
磷素吸收总量
Total phosphorus
absorption
(kg/hm2)
磷素吸收效率
Phosphorus absorption
efficiency
(kg/kg)
钾素吸收总量
Total potassium
absorption
(kg/hm2)
钾素吸收效率
Potassium absorption
efficiency
(kg/kg)
早稻
Early rice
P45S1 65.92b 0.44b 14.72c 0.33a 76.96c 0.51c
P45S2 61.38c 0.41b 15.84b 0.35a 70.34c 0.47d
P75S1 77.06a 0.51a 19.86a 0.26b 85.99a 0.55b
P75S2 66.19b 0.44b 16.86b 0.22bc 81.85b 0.55b
P105S1 78.92a 0.53a 20.06a 0.19c 87.24a 0.58a
P105S2 76.19a 0.51a 19.49a 0.19c 85.62ab 0.57ab
P0 56.90d 0.38d 9.26d 73.19c 0.49b
$\bar{P45}$ 63.65c 0.42c 15.28c 0.34a 73.65c 0.49b
$\bar{P75}$ 71.63b 0.48b 18.36b 0.24b 83.92b 0.56a
$\bar{ P105}$ 77.56a 0.52a 19.78a 0.19c 86.43a 0.58a
$\bar{S1}$ 73.97a 0.49a 18.21a 0.26a 83.40a 0.56a
$\bar{S2}$ 67.92b 0.45b 17.40a 0.25a 79.27b 0.53b
晚稻
Late rice
P45S1 120.14c 0.80b 27.39cd 0.61a 89.34c 0.60b
P45S2 121.25c 0.81b 28.49c 0.63a 90.66c 0.60b
P75S1 135.24b 0.90a 27.08d 0.36c 85.15d 0.57c
P75S2 136.34ab 0.91a 32.76b 0.44b 97.65b 0.65a
P105S1 138.40ab 0.92a 33.42b 0.32e 98.20b 0.65a
P105S2 139.80a 0.93a 35.33a 0.34d 102.17a 0.68a
P0 109.75c 0.73c 21.43d 78.30c 0.52c
$\bar{P45}$ 120.70b 0.80b 27.94c 0.62a 90.00b 0.60b
$\bar{P75}$ 135.79a 0.91a 29.92b 0.40b 91.40b 0.61b
$\bar{ P105}$ 139.10a 0.93a 34.38a 0.33c 100.19a 0.67a
$\bar{S1}$ 131.26a 0.88a 29.30b 0.43b 90.90b 0.61b
$\bar{S2}$ 132.46a 0.89a 32.19a 0.47a 96.83a 0.65a

Table 10

Accumulation and absorption efficiency of nitrogen, phosphorus and potassium in double-cropping rice under different phosphorus fertilizer treatments in 2022"

季别
Season
处理
Treatment
氮素吸收总量
Total nitrogen
absorption
(kg/hm2)
氮素吸收效率
Nitrogen absorption
efficiency
(kg/kg)
磷素吸收总量
Total phosphorus
absorption
(kg/hm2)
磷素吸收效率
Phosphorus absorption
efficiency
(kg/kg)
钾素吸收总量
Total potassium
absorption
(kg/hm2)
钾素吸收效率
Potassium absorption
efficiency
(kg/kg)
早稻
Early rice
P45S1 77.90c 0.52c 21.39d 0.48a 75.01bc 0.50d
P452 78.35c 0.52c 19.34e 0.43b 78.46b 0.52c
P75S1 96.06a 0.64a 23.75c 0.32c 86.99a 0.58a
P75S2 81.90b 0.55b 22.82c 0.30d 72.73c 0.48d
P105S1 100.86a 0.67a 25.19a 0.24f 87.25a 0.58a
P105S2 84.55b 0.56b 25.81a 0.26e 82.91a 0.55b
P0 73.64d 0.49d 14.97d 70.03c 0.47c
$\bar{P45}$ 78.13c 0.52c 20.37c 0.45a 76.74b 0.51b
$\bar{P75}$ 88.98b 0.59b 23.29b 0.31b 79.86b 0.53b
$\bar{ P105}$ 92.71a 0.62a 25.50a 0.24c 85.08a 0.57a
$\bar{S1}$ 91.61a 0.61a 23.44a 0.35a 83.08a 0.55a
$\bar{S2}$ 81.60b 0.54b 22.66a 0.33b 78.03b 0.52b
晚稻
Late rice
P45S1 119.64d 0.80c 30.08c 0.67a 101.20d 0.67c
P45S2 123.11cd 0.82bc 29.36c 0.65a 103.75d 0.69c
P75S1 127.91bc 0.85b 34.09b 0.45b 105.58d 0.70c
P75S2 134.46ab 0.90a 33.87b 0.45b 111.14c 0.74b
晚稻
Late rice
P105S1 135.25a 0.90a 34.88ab 0.33c 118.31b 0.79a
P105S2 139.99a 0.93a 35.92a 0.34c 124.71a 0.83a
P0 116.55c 0.78c 23.60c 95.18d 0.63d
$\bar{P45}$ 121.38b 0.81c 29.72b 0.66a 102.48c 0.68c
$\bar{P75}$ 131.19a 0.87b 33.98a 0.45b 108.36b 0.72b
$\bar{ P105}$ 137.62a 0.92a 34.90a 0.33c 121.51a 0.81a
$\bar{S1}$ 127.60a 0.85a 33.02a 0.48a 108.36b 0.72a
$\bar{S2}$ 132.52a 0.88a 33.05a 0.48a 113.20a 0.75a

Table 11

Utilization efficiency of nitrogen, phosphorus and potassium of double-cropping rice under different phosphorus fertilizer treatments in 2021"

季别
Season
处理
Treatment
氮素利用效率
Nitrogen
utilization
efficiency
(kg/kg)
氮肥偏生产力
Partial
productivity
of nitrogen
fertilizer (kg/kg)
磷素利用效率
Phosphorus
utilization
efficiency
(kg/kg)
磷肥偏生产力
Partial
productivity
of phosphorus
fertilizer (kg/kg)
磷肥利用率
Utilization rate
of phosphorus
fertilizer (%)
钾素利用效率
Potassium
utilization
efficiency
(kg/kg)
钾肥偏生产力
Partial productivity
of potassium
fertilizer (kg/kg)
早稻
Early rice
P45S1 118.78b 52.20c 531.93a 174.00a 12.13b 101.74b 52.20bc
P45S2 126.43a 51.73c 489.90b 172.44a 14.62a 110.32a 51.73c
P75S1 113.29c 58.20a 439.58c 116.40b 14.13a 101.52b 58.20a
P75S2 122.83a 54.20b 482.21b 108.40b 10.13c 99.33b 54.20b
P105S1 101.24d 53.27bc 398.31d 76.10c 10.29c 91.59c 53.27bc
P105S2 103.56d 52.60bc 404.82e 75.14c 9.74d 92.10c 52.60bc
P0 124.32a 46.51c 753.78a 105.68a 46.51c
$\bar{P45}$ 122.61a 51.97b 510.92b 173.22a 13.38a 106.03a 51.97b
$\bar{P75}$ 118.06b 56.20a 460.90c 112.40b 12.13a 100.43b 56.20a
$\bar{ P105}$ 102.40c 52.94b 401.57d 75.62c 10.02b 91.85c 52.94b
$\bar{S1}$ 111.10b 54.56a 456.61a 122.17a 12.18a 98.28b 54.56a
$\bar{S2}$ 117.61a 52.84a 458.98a 118.66a 11.50b 100.58a 52.84a
晚稻
Late rice
P45S1 80.49a 64.47c 353.05b 214.89a 13.24b 108.24b 64.47c
P45S2 82.14a 66.40bc 349.60b 221.33a 15.69a 109.86b 66.40bc
P75S1 74.53c 67.20b 372.23a 134.40b 7.53d 118.38a 67.20b
P75S2 77.09b 70.07a 320.82c 140.13b 15.11a 107.63b 70.07a
P105S1 71.68d 66.13bc 296.83d 94.48c 11.42c 101.02c 66.13bc
P105S2 71.39d 66.53bc 282.48d 95.05c 13.24b 97.68c 66.53b
P0 89.71a 61.43c 430.24a 122.97a 61.43c
$\bar{P45}$ 81.32b 65.44b 351.33b 218.11a 14.47a 109.05c 65.44b
$\bar{P75}$ 75.81c 68.64a 346.53c 137.27b 11.32b 113.01b 68.64a
$\bar{ P105}$ 71.54d 66.33ab 289.66d 94.77c 12.33b 99.35d 66.33b
$\bar{S1}$ 75.57a 65.93a 340.70a 147.92a 10.73b 109.21a 65.93a
$\bar{S2}$ 76.87a 67.67a 317.63b 152.17a 14.68a 105.06b 67.67a

Table 12

Utilization efficiency of nitrogen, phosphorus and potassium of double cropping rice under different phosphorus fertilizer treatments in 2022"

季别
Season
处理
Treatment
氮素利用效率
Nitrogen
utilization
efficiency
(kg/kg)
氮肥偏生产力
Partial
productivity of
nitrogen fertilizer
(kg/kg)
磷素利用效率
Phosphorus
utilization
efficiency
(kg/kg)
磷肥偏生产力
Partial productivity
of phosphorus
fertilizer (kg/kg)
磷肥利用率
Utilization rate
of phosphorus
fertilizer (%)
钾素利用效率
Potassium
utilization
efficiency
(kg/kg)
钾肥偏生产力
Partial productivity
of potassium
fertilizer (kg/kg)
早稻
Early rice
P45S1 91.02a 47.27bc 331.54bc 157.56a 14.27a 94.52b 47.27bc
P45S2 89.22ab 46.60c 361.43a 155.33a 9.72d 89.08cd 46.60c
P75S1 83.07c 53.20a 336.00b 106.40b 11.71b 91.73bc 53.20a
P75S2 88.77ab 48.47bc 318.58c 96.93c 10.47c 99.96a 48.47bc
P105S1 73.47d 49.40b 294.16d 70.57d 9.73d 84.93d 49.40b
P105S2 86.10bc 48.53bc 282.06d 69.33d 10.32c 87.80cd 48.53b
P0 87.86a 43.13c 432.34a 92.39a 43.13c
$\bar{P45}$ 90.12a 46.93b 346.48b 156.44a 11.99a 91.80a 46.93b
$\bar{P75}$ 85.92a 50.84a 327.29c 101.67b 11.09b 95.85a 50.84a
$\bar{ P105}$ 79.79b 48.97ab 288.11d 69.95c 10.03c 86.37b 48.97ab
$\bar{S1}$ 82.52b 49.96a 320.57a 111.51a 11.90a 90.39a 49.96a
$\bar{S2}$ 88.00a 47.87a 320.69a 107.20a 10.17b 92.28a 47.87a
晚稻
Late rice
P45S1 79.57a 63.47c 316.54ab 211.56a 14.39a 94.07a 63.47c
P45S2 78.55a 64.47c 329.42a 214.89a 12.79b 93.21a 64.47c
P75S1 78.26a 66.73bc 293.63c 133.47b 13.99a 94.81a 66.73bc
P75S2 78.39a 70.27a 311.19b 140.53b 13.70a 94.84a 70.27a
P105S1 73.72b 66.47bc 285.84c 94.95c 10.74d 84.27b 66.47bc
P105S2 72.72b 67.87ab 283.43c 96.95c 11.73c 81.63b 67.87ab
P0 79.28a 61.60c 391.57a 97.08a 61.60c
$\bar{P45}$ 79.06a 63.97bc 322.98b 213.22a 13.59a 93.64a 63.97b
$\bar{P75}$ 78.33a 68.50a 302.41c 137.00b 13.84a 94.83a 68.50a
$\bar{ P105}$ 73.22b 67.17ab 285.64d 95.95c 11.24b 82.95b 67.17ab
$\bar{S1}$ 77.18a 65.56a 301.23a 146.66a 13.04a 91.05a 65.56a
$\bar{S2}$ 76.55a 67.54a 306.34a 150.79a 12.74a 89.89a 67.54a
[1] 闫金垚, 鲁君明, 侯文峰, 等. 磷肥用量对不同水稻品种产量和磷肥利用率的影响. 中国农业科技导报, 2018, 20(8):74-81.
doi: 10.13304/j.nykjdb.2017.0722
[2] 马畅, 付雪蛟, 吕小红, 等. 施磷量对水稻盐丰47产量、需磷量及磷肥利用率的影响. 东北农业科学, 2022, 47(6):20-24.
[3] 谢坚, 郑圣先, 廖育林, 等. 缺磷型稻田土壤施磷增产效应及土壤磷素肥力状况的研究. 中国农学通报, 2009, 25(3):147-154.
[4] 李文西, 张月平, 毛伟, 等. 水稻磷肥施用效果、经济效益及推荐用量. 江苏农业科学, 2013, 41(10):61-63.
[5] Lee C H, Park C Y, Park K D, et al. Long-term effects of fertilization on the forms and availability of soil phosphorus in rice paddy. Chemosphere, 2004, 56(3):299-304.
pmid: 15172602
[6] 戴佩彬. 模拟条件下磷肥配施有机肥对土壤磷素转化迁移及水稻吸收利用的影响. 杭州: 浙江大学, 2016.
[7] 李瑞鸿, 洪林, 罗文兵. 漳河灌区农田地表排水中磷素流失特征分析. 农业工程学报, 2010, 26(12):102-106.
[8] 司友斌, 王慎强, 陈怀满. 农田氮、磷的流失与水体富营养化. 土壤, 2000, 32(4):188-193.
[9] 江尚焘, 王火焰, 周健民, 等. 磷肥施用对水稻生长和磷素吸收的影响. 土壤, 2016, 48(6):1085-1091.
[10] 朱德峰, 陈惠哲, 徐一成, 等. 我国双季稻生产机械化制约因子与发展对策. 中国稻米, 2013, 19(4):1-4.
doi: 10.3969/j.issn.1006-8082.2013.04.001
[11] 薄树升. 水稻田养分含量现状及改良措施. 农民致富之友, 2011(14):28.
[12] 王朋, 刘洪伏. 不同磷肥运筹对水稻产量形成的影响. 安徽农学通报, 2018, 24(24):30-31.
[13] 刘洪伏, 王朋, 孙杰. 磷肥运筹对华粳5号产量及其构成因素的影响. 农业科技通讯, 2018(12):97,253.
[14] 王丽萍, 解保胜, 顾春梅, 等. 磷肥运筹和试验品种对寒地粳稻干物质积累与转运的影响. 中国土壤与肥料, 2017(2):76-81.
[15] 钟雪梅, 黄铁平, 彭建伟, 等. 机插同步一次性精量施肥对双季稻养分累积及利用率的影响. 中国水稻科学, 2019, 33(5):436-446.
doi: 10.16819/j.1001-7216.2019.8084
[16] 王建新. 湖南省衡阳县提速水稻育插秧机械化. 农机科技推广, 2013, 126(4):36.
[17] 曾成城, 苏天明, 苏利荣, 等. 广西典型喀斯特地区不同土地利用方式土壤养分特征. 江苏农业科学, 2021, 49(2):199-203.
[18] 王伟妮, 鲁剑巍, 鲁明星, 等. 湖北省早、中、晚稻施磷增产效应及磷肥利用率研究. 植物营养与肥料学报, 2011, 17(4):795-802.
[19] 张锴, 马各富. 永善县玉米土壤养分丰缺及推荐施肥指标体系的建立. 现代农业科技, 2014(1):14-15,17.
[20] 李前, 侯云鹏, 高军, 等. 不同供磷水平对水稻干物质累积、磷素吸收分配及产量的影响. 吉林农业科学, 2015, 40(3):37-41.
[21] 张锦滨, 王晓云, 孟圆, 等. 不同磷肥用量对水稻产量效益、磷肥利用率及土壤养分的影响. 中国农学通报, 2021, 37(32):96-101.
doi: 10.11924/j.issn.1000-6850.casb2021-0671
[22] 侯云鹏, 孔丽丽, 李前, 等. 不同施磷水平下水稻产量、养分吸收及土壤磷素平衡研究. 东北农业科学, 2016, 41(6):61-66.
[23] 吴可, 谢慧敏, 刘文奇, 等. 氮、磷、钾肥对水稻养分积累与利用的影响. 分子植物育种, 2024, 22(6):1960-1967.
[24] Gor F A, Kuhne R F, Tanner D G, et al. Recovery of 15N-label urea applied to wheat (Triticum aestivum L.) in the Ethiopian high-lands as affected by P fertilization. Journal of Agronomy and Crop Science, 2003, 189:30-38.
doi: 10.1046/j.1439-037X.2003.00006.x
[25] 张希忠, 温贤芳, 陈一珠, 等. 利用同位素15N和32P研究掺合肥料的肥效. 核农学通报, 1989, 10(1):24-28.
[26] 田玉华, 尹斌, 贺发云, 等. 太湖地区水稻季氮肥的作物回收和损失研究. 植物营养与肥料学报, 2009, 15(1):55-61.
[27] 郭智, 刘红江, 张岳芳, 等. 氮磷减施对水稻剑叶光合特性、产量及氮素利用率的影响. 西南农业学报, 2017, 30(10):2263-2269.
[28] Kuiper D, Schuit J, Kuiper P. Effects of internal and external cytokinin concentrations on root growth and shoot to root ratio of Plantago majorssp. pleiosperma at different nutrient conditions. Plant and Soil, 1988, 111:231-236.
doi: 10.1007/BF02139944
[1] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[2] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[3] Su Yuting, Yuan Shuai, Li Yongsong, Cui Can, Chen Pingping, Wang Xiaoyu, Yi Zhenxie. Effects of Nitrogen Fertilizer Management on Yield and Lodging Resistance Properties of Double-Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2022, 38(3): 225-232.
[4] Li Jiahui, Cheng Qin, Ou Kewei, Tan Qinliang, Pang Xinhua, Zhou Quanguang, Lü Ping, Song Qiqi, Tang Yuwei, Zhu Pengjin. Comparison of Tiller Characters of Sugarcane Varieties (Lines) in Different Sugarcane Regions and Their Effects on Yield and Yield Components [J]. Crops, 2021, 37(5): 79-86.
[5] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[6] Zhao Baoping, Liu Jinghui, Ren Changzhong. Research Progress of Physiological Mechanism of Yield Formation in Oats [J]. Crops, 2021, 37(3): 1-7.
[7] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[8] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[9] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Analysis of the Characteristics of Dry Matter Production and Light Energy Utilization of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2020, 36(1): 41-46.
[10] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[11] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Variation Analysis of Agronomic Traits of Waxy Sorghum Varieties (Lines) in Different Eras in Guizhou Province [J]. Crops, 2019, 35(4): 17-23.
[12] Ying Chen,Manli Zhang,Xianping Liu,Guijin Dai,Shougui Hou. Effects of Biochar on Chlorophyll Fluorescence at Full Heading Stage and Yield Components of Rice [J]. Crops, 2016, 32(3): 94-98.
[13] Qiming Zhang,Yongjun Zeng,Weisheng Lü,Shan Huang,Qingyin Shang,Yanhua Zeng,Xueming Tan,Qinghua Shi,Xiaohua Pan. Effects of Nitrogen Application and Transplanting Seedlings Number Per Hole on the Grain Yield and Nitrogen Use Efficiency of Double-Rice by Machine Plug [J]. Crops, 2016, 32(3): 144-150.
[14] Huatao Liu,Xuefang Huang,Mingjing Huang,Baoliang Chi,Xiuqing Zheng,Junfeng Chen. Effects of Drought Stress at Jointing Stage on Yield and Drought Resistance in Spring Maize [J]. Crops, 2016, 32(2): 89-94.
[15] Xiaoli Gao. Effects of Phosphorus on Pea Yield and Its Components [J]. Crops, 2016, 32(1): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!