Crops ›› 2024, Vol. 40 ›› Issue (2): 30-39.doi: 10.16035/j.issn.1001-7283.2024.02.005

Previous Articles     Next Articles

Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize

Zhang Qian1,2(), Ren Wen2, Zhao Bingbing2, Zhou Miaoyi2, Li Hanshuai2, Liu Ya2(), Du Hewei1()   

  1. 1College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
    2Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
  • Received:2023-02-12 Revised:2023-05-11 Online:2024-04-15 Published:2024-04-15

Abstract:

The mitogen-activated protein kinase (MAPK) plays an important role in the process of plants responsing to both biological and non-biological stresses. In the previous study, we excavated the potentially important drought- resistant gene ZmMAPKKK21. In this study, the ZmMAPKKK21 gene was cloned from the drought-resistant maize inbred line J24 and bioinformatics analysis was performed on the gene. The findings indicated that the ZmMAPKKK21 gene's open reading frame measured 1419 bp and encoded 472 amino acids. The protein was hydrophilic and devoid of a signal peptide. Its promoter sequence featured several cis-acting regions associated with hormones and stress. It is anticipated that the maize MAPKKK21 protein was found on the nucleus. The outcome of the protein interaction prediction indicated that ZmMAPKKK21 interacted with the plant stress- related proteins MAPKK3 and ZIM family. In addition to being extremely conservative on the STKc_MAPKKK domain, its secondary and tertiary structures are more akin to those of highly drought-resistant gramineous crops, such as sorghum (Sorghum bicolor L.) and foxtail millet (Setaria italica L.). The association between the expression of the ZmMAPKKK21 gene and the response to drought stress was further confirmed by qRT-PCR analysis, which revealed that the gene's expression level was high in maize roots and that it was up-regulated in roots and leaves following drought stress.

Key words: Maize, MAPKKK, Bioinformatics analysis, Expression analysis

Table 1

Sequences of primers and their usage"

引物名称
Primer name
引物序列(5'-3')
Primer sequence (5'-3')
用途
Usage
ZmMAPKKK21-F AACGATGGAAACGGACCGAA 基因克隆
ZmMAPKKK21-R TGGGAATCTTGGCGTTGACA
PZmMAPKKK21-F GTCCAACTCTGACCCTAAGCG 启动子克隆
PZmMAPKKK21-R CTACCAGTTCCAGTGTCTGC
QZmMAPKKK21-F GATGCAGAGGTGGAGCAACT 实时荧光
定量PCR
QZmMAPKKK21-R GTGGACGCCTGAATGCATAG
ZmGPN1-F TGACCAAGGTGAAGAGCACTGT
ZmGPN1-R CAAATCTCACGTGGCTATGAAAC

Table 2

Bioinformatics analysis websites"

功能Function 网址Website
启动子分析Promoter analysis https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
保守结构域预测Prediction of conserved domain https://www.ncbi.nlm.nih.gov/cdd/
磷酸化位点预测Phosphorylation site prediction https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
亲疏水性预测Hydrophilicity prediction https://web.expasy.org/protscale/
信号肽预测Signal peptide prediction https://services.healthtech.dtu.dk/service.php?SignalP-6.0
跨膜结构预测Transmembrane structure prediction https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
理化性质预测Physical and chemical properties prediction https://web.expasy.org/protparam/
二级结构预测Secondary structure prediction https://npsapbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
三级结构预测Three-level structure prediction https://swissmodel.expasy.org/
亚细胞定位Subcellular localization http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
蛋白互作预测Protein interaction prediction https://cn.string-db.org/

Fig.1

Electrophoresis of PCR amplification (a) Electrophoresis of genomic DNA, (b) Electrophoresis for amplification of full-length ZmMAPKKK21, (c) Electrophoresis for amplification of ZmMAPKKK21 promoter, M: 1 kb DNA marker."

Table 3

Cis-acting element analysis of promoter of ZmMAPKKK21 gene"

顺式作用元件Cis-acting element 序列Sequence 功能Function 数量Number
ABRE,ABRE3a ACGTG, CACGTGTACGTG 脱落酸响应元件 5
CGTCA基序,TGACG基序CGTCA-motif, TGACG-motif CGTCA, TGACG 茉莉酸响应元件 5
G盒G-box TACGTG 光响应元件 4
GARE基序GARE-motif TCTGTTG 赤霉素响应元件 1
富含TC重复序列TC-rich repeats GTTTTCTTAC 参与防御和应激反应元件 1
TGA元件TGA-element AACGAC 生长素响应元件 1
MRE AACCTAA 参与光响应的MYB结合位点 1
AAGAA基序AAGAA-motif gGTAAAGAAA 发育相关基序 1
CCAAT盒CCAAT-box CAACGG MYBHv1结合位点 1
CCGTCC盒CCGTCC-box CCGTCC 分生组织特异性激活响应元件 1
STRE AGGGG 热诱导响应元件 4
MYB CAACCA 干旱响应元件 1
MYC CATGTG, CATTTG 干旱响应元件 2

Fig.2

Analysis of ZmMAPKKK21 gene promoter cis-acting elements (a) and CpG island (b) (b) The blue region represents CpG island."

Table 4

Prediction results of ZmMAPKKK21 protein primary structure"

一级结构特征
Characteristic of primary structure
预测结果
Prediction result
氨基酸数量Number of amino acids 472
等电点Isoelectric point (pI) 6.41
分子量Molecular weight (kD) 49 516.58
分子式Molecular formula C2149H3399N663O657S15
正电荷残基Arg+Lys 53
负电荷残基Asp+Glu 57
平均疏水性Average hydrophobicity -0.23
脂肪系数Aliphatic index (AI) 76.12
不稳定系数(Ⅱ) Instability coefficient (Ⅱ) 42.45
半衰期Estimated half-life (h) 30.00

Fig.3

Analysis of physical and chemical properties of ZmMAPKKK21 protein (a) Analysis of hydrophilicity and hydrophobicity, (b) Signal peptide prediction, (c) Prediction of transmembrane structure, (d) Prediction of phosphorylation sites."

Fig.4

Phylogenetic tree of amino acid sequences encoded by ZmMAPKKK21 and MAPKKK from other plants"

Fig.5

Conserved domains analysis of ZmMAPKKK21 protein and homologous proteins"

Fig.6

The prediction of tertiary structural model of ZmMAPKKK21 protein and homologous proteins"

Fig.7

Subcellular localization prediction (a) and protein interaction prediction (b)"

Fig.8

Relative expression of ZmMAPKKK21 gene in various organs R: root, L: leaf, S: stem."

Fig.9

Expression of ZmMAPKKK21 gene in roots and leaves under drought stress “**”represents significant differences at the level of P < 0.01."

[1] 周秒依, 任雯, 赵冰兵, 等. 植物MAPK级联途径应答的非生物胁迫研究进展. 中国农业科技导报, 2020, 22(2):22-29.
doi: 10.13304/j.nykjdb.2019.0737
[2] Zhang M M, Zhang S Q. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 2022, 64(2):301-341.
doi: 10.1111/jipb.13215
[3] Xu J, Zhang S Q. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 2015, 20(1):56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[4] Zhang M M, Su J B, Zhang Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Current Opinion in Plant Biology, 2018, 45:1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[5] Liu D D, Zhu M, Hao L L, et al. GhMAPKKK49, a novel cotton (Gossypium hirsutum L.) MAPKKK gene, is involved in diverse stress responses. Acta Physiologiae Plantarum, 2016, 38(1):13.
doi: 10.1007/s11738-015-2029-y
[6] Jonak C, Okresz L, Bogre L, et al. Complexity,cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology, 2002, 5(5):415-424.
doi: 10.1016/S1369-5266(02)00285-6
[7] Rao K P, Richa T, Kumar K, et al. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Research, 2010, 17(3):139-153.
doi: 10.1093/dnares/dsq011 pmid: 20395279
[8] 刘晨, 曹小汉, 殷丹丹, 等. MAPK信号通路调控植物响应非生物胁迫的研究进展. 安徽农业科学, 2022, 50(18):9-16.
[9] Moustafa K. Improving plant stress tolerance: potential applications of engineered MAPK cascades. Trends in Biotechnology, 2014, 32(8):389-390.
doi: 10.1016/j.tibtech.2014.06.005 pmid: 24986255
[10] Zhen W, Song Y, Ren W C, et al. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families in Fagopyrum tataricum and analysis of their expression patterns under abiotic stress. Frontiers in Genetics, 2022, 13:894048.
doi: 10.3389/fgene.2022.894048
[11] Wang N, Liu Y S, Dong C H, et al. MdMAPKKK1 regulates apple resistance to Botryosphaeria dothidea by interacting with MdBSK1. International Journal of Molecular Sciences, 2022, 23(8):4415.
doi: 10.3390/ijms23084415
[12] Li Y Y, Cai H X, Liu P, et al. Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochemical and Biophysical Research Communications, 2017, 484(2):292-297.
doi: 10.1016/j.bbrc.2017.01.104
[13] Zhou M Y, Zhao B B, Han S L, et al. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 2022, 114(2):110311.
doi: 10.1016/j.ygeno.2022.110311
[14] Daryanto S, Wang L, Jacinthe P A. Global synthesis of drought effects on maize and wheat production. PLoS ONE, 2017, 11(5):e0156362.
doi: 10.1371/journal.pone.0156362
[15] Rai M K, Kalia R K, Singh R, et al. Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environmental and Experimental Botany, 2011, 71(1):89-98.
doi: 10.1016/j.envexpbot.2010.10.021
[16] Liu Y, Zhou M Y, Gao Z X, et al. RNA-Seq analysis reveals MAPKKK family members related to drought tolerance in maize. PLoS ONE, 2015, 10(11):e0143128.
doi: 10.1371/journal.pone.0143128
[17] Zhang M Y, Pan J W, Kong X D, et al. ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses. Journal of Plant Physiology, 2012, 169(15):1501-1510.
doi: 10.1016/j.jplph.2012.06.008 pmid: 22835533
[18] Zhang Z B, Li X L, Yu R, et al. Isolation,structural analysis, and expression characteristics of the maize TIFY gene family. Molecular Genetics and Genomics, 2015, 290(5):1849-1858.
doi: 10.1007/s00438-015-1042-6
[19] Lin L, Wu J, Jiang M, et al. Plant mitogen-activated protein kinase cascades in environmental stresses. International Journal of Molecular Sciences, 2021, 22(4):1543.
doi: 10.3390/ijms22041543
[20] Komis G, Šamajov O, Ovečka M, et al. Cell and developmental biology of plant mitogen-activated protein kinases. Annual Review of Plant Biology, 2018, 69(1):237-265.
doi: 10.1146/arplant.2018.69.issue-1
[21] Zi S, Zhao B B, Wei S, et al. Genome-wide identification and characterization of the MAPKKK, MKK, and MPK families in Chinese elite maize inbred line Huangzaosi. The Plant Genome, 2022, 15(3):e20216.
doi: 10.1002/tpg2.v15.3
[22] 卢峰, 张飞, 段有厚. 干旱胁迫对高粱苗期物质生产及生理特性的影响. 作物杂志, 2015(2):149-153.
[23] 于国红, 刘朋程, 郝洪波, 等. 不同基因型谷子对干旱胁迫的调控机制. 植物营养与肥料学报, 2022, 28(1):157-167.
[24] Wang M, Yue H, Feng K W, et al. Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC Genomics, 2016, 17(1):668.
doi: 10.1186/s12864-016-2993-7
[25] Wu J, Wang J, Pan C T, et al. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS ONE, 2014, 9(7):e103032.
doi: 10.1371/journal.pone.0103032
[26] 李媛媛. AtMAPKKK18调节干旱胁迫抗性的分子机理研究. 泰安: 山东农业大学, 2016.
[27] 王芳, 彭云玲, 方永丰, 等. 花后干旱胁迫对不同持绿型玉米叶片衰老的影响. 水土保持通报, 2018, 38(4):60-66.
[28] 陆兰姣, 王治红. 探讨玉米自交系苗期耐旱性差异分析. 农业与技术, 2016, 36(2):7,29.
[29] 许璐璐, 王涵, 高盼盼, 等. 环境胁迫对植物根系形态的影响. 安徽农业科学, 2020, 48(14):16-19.
[1] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[2] Zhang Jun, Cai Suyun, Xu Zihao, Hou Lei, He Runli, Yin Guifang, Wang Lihua, Wang Yanqing, Lu Wenjie, Sun Daowang. Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum [J]. Crops, 2024, 40(2): 23-29.
[3] Zhang Yu, Yang Wenjing, Liu Xuan, Nie Fengjie, Zhang Li, Shi Lei, Zhang Guohui, Guo Zhiqian, Gong Lei. Cloning and Expression Analysis of Potato StCWIN1 Gene Promoter and Its Role under Drought Stress [J]. Crops, 2024, 40(2): 54-61.
[4] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[5] Feng Yong, Hou Xuguang, Xue Chunlei, Zhang Laihou, Song Guodong, Su Minli, Fu Xiaohua, Sun Yuyan. Division of Suitable Ecological Regions of Maize Varieties in Inner Mongolia [J]. Crops, 2024, 40(1): 23-30.
[6] Wang Haitao, Ren Chunmei, Dong Yan, Li Shuo, Cheng Zhaobang, Ji Yinghua. Molecular Detection and Identification of Maize Yellow Mosaic Virus on Sorghum in Huai’an, Jiangsu [J]. Crops, 2024, 40(1): 233-238.
[7] Ma Juan, Huang Lu, Yu Ting, Guo Guojun, Zhu Weihong, Liu Jingbao. Multi-Locus Genome-Wide Association Study and Genomic Prediction for General Combining Ability of Maize Ear Diameter [J]. Crops, 2024, 40(1): 31-39.
[8] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[9] Wu Ying, Hu Die, Li Ting, Duan Qianyuan, Wei Ningning, Zhang Xinghua, Xu Shutu, Xue Jiquan. Analysis of WRKY Transcription Factor IIc Subfamily in Maize and Its Expression Profile under Drought [J]. Crops, 2024, 40(1): 80-89.
[10] Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10.
[11] Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113.
[12] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[13] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[14] Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279.
[15] Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!