Crops ›› 2024, Vol. 40 ›› Issue (3): 119-126.doi: 10.16035/j.issn.1001-7283.2024.03.015

Previous Articles     Next Articles

Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang

Liu Yue1(), Jia Yonghong2, Yu Yuehua1, Zhang Jinshan1, Wang Runqi1, Li Dandan1, Shi Shubing1()   

  1. 1College of Agronomy of Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Qitai County Wheat Experiment Station, Xinjiang Academy of Agricultural Sciences, Qitai 831800, Xinjiang, China
  • Received:2023-04-30 Revised:2023-09-25 Online:2024-06-15 Published:2024-06-18

Abstract:

In order to clarify the suitable N fertilizer management model for peanut production, using Huayu 25 as the test variety, four N levels (N1: 90 kg/ha, N2: 135 kg/ha, N3: 180 kg/ha, N4: 225 kg/ha) and three N application methods (T1: 1/2 base fertilizer+1/2 seedling fertilizer, T2: 1/2 base fertilizer+1/4 seedling fertilizer+ 1/4 flower needle fertilizer, T3: 1/2 base fertilizer+1/6 seedling fertilizer+1/6 flower needle fertilizer+1/6 pod fertilizer) were set up, and no N application was the control (CK), to analyze the influence of different N fertilizer management model on the growth, development, yield and quality of peanut. The results showed that by increasing the nitrogen fertilizer in the range of 90-225 kg/ha, the main stem height, the first collateral branch length and the number of branches were the highest in N4 treatment. The amount of dry matter and yield increased first and then decreased, with the highest in N3 treatment. The contents of protein, fat and oleic acid were the highest in N3 treatment. When the N fertilizer dosage was the same, the amount of dry matter accumulation and yield were the highest in T3 treatment. The contents of protein, fat and oleic acid were the highest in T2 treatment. The dry matter accumulation and yield of peanut were higher than other treatments, and the quality was better with the N3T3 treatment. In terms of yield improvement and quality enhancement, 180 kg/ha of N, 90 kg/ha of basal N fertilizer and 30 kg/ha top dressing of N fertilizer at the seedling, flowering needle and pod setting stages can be considered as the best N fertilizer management model for achieving high yield and quality of peanut in northern Xinjiang.

Key words: Peanut, Nitrogen fertilizer dosage, Nitrogen application method, Yield, Quality

Table 1

The stage and dosage of nitrogen fertilizer application kg/hm2"

处理Treatment 基肥
Base
fertilizer
追肥Topdressing
施氮量
Nitrogen
dosage
施氮方式
Nitrogen
application
method
幼苗期
Seedling
stage
花针期
Flowering
needle
stage
结荚期
Pod
setting
stage
N1 T1 45.0 45.0 0.0 0.0
T2 45.0 22.5 22.5 0.0
T3 45.0 15.0 15.0 15.0
N2 T1 67.5 67.5 0.0 0.0
T2 67.5 33.8 33.8 0.0
T3 67.5 22.5 22.5 22.5
N3 T1 90.0 90.0 0.0 0.0
T2 90.0 45.0 45.0 0.0
T3 90.0 30.0 30.0 30.0
N4 T1 112.5 112.5 0.0 0.0
T2 112.5 56.3 56.3 0.0
T3 112.5 37.5 37.5 37.5

Table 2

The meteorological elements during the growing period of peanut in 2022"

月份
Month
日照时数
Sunshine hours (h)
平均气温
Mean temperature (℃)
最低气温
Minimum temperature (℃)
最高气温
Maximum temperature (℃)
降水量
Precipitation (mm)
5 304.0 21.3 7.3 35.2 4.3
6 305.7 23.8 7.8 39.5 15.1
7 303.0 24.3 11.4 36.4 11.4
8 304.4 22.5 6.8 38.2 9.2
9 276.8 18.8 3.0 37.0 17.3

Fig.1

Effects of nitrogen fertilizer managements on main stem height Different lowercase letters mean significant difference at the 0.05 level, the same below."

Fig.2

Effects of nitrogen fertilizer managements on the first collateral branch length"

Fig.3

Effects of nitrogen fertilizer managements on the number of branches"

Table 3

Effects of nitrogen fertilizer managements on dry matter per plant of peanut g"

施氮量
Nitrogen amount
施氮方式
Nitrogen application method
出苗后天数Days after emergence
15 d 30 d 45 d 60 d 75 d 90 d 105 d
N1 T1 5.0±0.3a 14.5±0.3a 28.2±1.1b 46.3±0.6b 63.3±1.5b 62.4±0.6c 60.2±0.8c
T2 5.0±0.6a 13.5±0.5b 29.0±0.7a 47.8±0.9a 65.6±0.1a 64.4±0.1b 62.2±0.1b
T3 5.2±0.4a 12.7±0.3c 27.7±0.6c 46.8±0.2ab 66.5±0.5a 65.9±0.3a 63.1±0.0a
平均值Average 5.1±0.4c 13.6±0.9d 28.3±0.9c 46.9±0.9c 65.1±1.6c 64.3±1.5c 61.9±1.3d
N2 T1 5.4±0.6a 16.4±0.6a 30.3±0.2ab 50.9±0.5c 73.6±0.8b 69.1±0.7c 65.7±1.0b
T2 5.3±0.6a 15.8±0.7ab 30.7±0.4a 52.7±0.4a 74.9±0.6ab 70.4±0.6b 66.7±0.9ab
T3 5.3±0.4a 15.4±0.3b 29.8±0.5b 51.7±0.4b 75.8±0.3a 72.4±0.5a 67.6±0.2a
平均值Average 5.4±0.4bc 15.9±0.6c 30.3±0.5b 51.8±0.8b 74.8±1.1b 70.7±1.5b 66.7±1.1c
N3 T1 5.8±0.3a 18.7±0.5a 32.7±0.2b 54.4±0.4c 80.7±0.6b 77.5±0.3b 69.9±1.0c
T2 5.6±0.7a 17.5±0.3b 33.6±0.3a 56.9±0.3a 82.6±0.9a 79.8±0.5a 71.5±0.0b
T3 5.9±0.5a 16.9±0.7b 32.5±0.3b 55.8±0.4b 83.6±1.1a 80.4±0.7a 72.8±0.7a
平均值Average 5.8±0.5ab 17.7±0.9b 32.9±0.6a 55.7±1.1a 82.3±1.5a 79.2±1.4a 71.4±1.4a
N4 T1 6.3±0.1a 19.4±0.3a 33.0±0.3b 54.9±0.1b 80.9±0.1b 77.3±1.0b 68.9±1.1b
T2 6.1±0.2a 18.0±0.5b 34.1±0.5a 56.4±0.6a 82.7±0.7a 79.1±0.6a 71.0±1.2a
T3 6.1±0.4a 17.8±0.4b 32.8±0.4b 55.9±0.6a 83.7±0.5a 79.8±1.1a 71.0±0.4a
平均值Average 6.2±0.2a 18.4±0.9a 33.3±0.7a 55.7±0.8a 82.4±1.3a 78.7±1.3a 70.3±1.3b
CK 4.5±0.0d 11.1±0.4e 21.5±0.1d 40.0±0.9d 50.9±0.8d 51.1±0.9d 47.7±0.7e

Table 4

Effects of nitrogen fertilizer managements on peanut yield and its composition factors"

施氮量
Nitrogen
amount
施氮方式
Nitrogen application
method
单株荚果数
Number of pods
per plant
饱果率
Full fruit ratio
(%)
百果重
100-pod
weight (g)
百仁重
100-seed
weight (g)
产量
Yield
(kg/hm2)
N1 T1 22.7b 69.2a 203.7a 83.4c 4378.7b
T2 24.3a 69.9a 204.1a 84.4b 4387.9b
T3 23.0b 71.0a 204.2a 85.0a 4430.4a
平均值Average 23.3d 70.0a 204.0c 84.3c 4398.9d
N2 T1 24.7b 67.6a 204.4b 85.1b 4493.7b
T2 25.7a 71.5a 205.2ab 85.3ab 4508.8b
T3 25.0ab 70.7a 205.9a 85.9a 4608.4a
平均值Average 25.1c 69.9a 205.2b 85.4b 4537.0c
N3 T1 27.0b 69.2a 205.6b 86.1b 4711.9b
T2 28.7a 68.6a 206.8a 86.4b 4770.9a
T3 27.7ab 68.7a 207.4a 87.2a 4788.1a
平均值Average 27.8a 68.8a 206.6a 86.6a 4757.0a
N4 T1 26.0b 68.0a 206.1a 85.0b 4673.0a
T2 27.3a 70.8a 206.2a 85.3b 4705.6a
T3 26.3ab 68.4a 207.0a 86.0a 4713.4a
平均值Average 26.6b 69.0a 206.4a 85.4b 4697.3b
CK 15.3e 67.5a 183.5d 74.9d 3867.7e

Table 5

Effects of nitrogen fertilizer managements on peanut quality"

施氮量
Nitrogen amount
施氮方式
Nitrogen application method
水分
Moisture (%)
蛋白质
Protein (%)
脂肪
Fat (%)
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
油酸/亚油酸
O/L
N1 T1 4.8b 21.1c 46.5c 41.8b 29.1b 1.4b
T2 5.2a 21.6a 47.0a 43.7a 30.0a 1.5b
T3 4.5c 21.4b 46.6b 42.1b 28.1c 1.5a
平均值Average 4.8ab 21.4d 46.7c 42.5b 29.1ab 1.5d
N2 T1 4.9ab 24.6c 49.9c 42.5b 25.8a 1.7b
T2 4.9a 24.8a 50.0a 46.7a 26.6a 1.8a
T3 4.8b 24.7b 49.9b 46.6a 26.3a 1.8a
平均值Average 4.9a 24.7c 49.9b 45.2a 26.2c 1.7b
N3 T1 4.7a 27.0b 52.4c 43.1b 24.0b 1.8a
T2 4.7a 27.1a 52.7a 47.0a 26.2a 1.8a
T3 4.5b 27.1a 52.5b 46.7a 25.9a 1.8a
平均值Average 4.6c 27.0a 52.5a 45.6a 25.4c 1.8a
N4 T1 4.8b 27.0b 46.1c 41.6b 27.5b 1.5a
T2 5.1a 27.1a 46.5a 45.2a 29.7a 1.5a
T3 4.5c 26.9c 46.2b 42.5b 27.2b 1.6a
平均值Average 4.8b 27.0b 46.3d 43.1b 28.1b 1.5c
CK 4.5d 19.2e 38.5e 38.5c 29.7a 1.3e
[1] 中国统计年鉴编委会. 中国统计年鉴. 北京: 中国统计出版社, 2022.
[2] 王小军. 新疆花生种植面积较上年增加10余万亩. (2022-10-09)[2023-09-19].https://baijiahao.baidu.com/s?id=1746217611965618833&wfr=spider&for=pc.
[3] 黄新阳, 周静, 赵恩海, 等. 施肥、密度、化控对山宁17产量的影响. 大豆科技, 2019(5):20-23.
[4] 郑亚萍, 孙秀山, 成强, 等. 缓释肥对旱地花生生长发育及产量的影响. 山东农业科学, 2011(8):68-70.
[5] Tang Y L, Rosemarne G M, Li C S, et al. Physiological factors underpinning grain yield improvements of synthetic derived wheat in Southwestern China. Crop Science, 2015, 55(1):98-112.
[6] 江晨, 张智猛, 孟爱芝, 等. 不同施氮量对花生干物质积累及氮肥利用率的影响. 山东农业科学, 2020, 52(7):67-70.
[7] 赵秀芬, 房增国. 大豆、 花生固氮与施氮关系的研究进展. 安徽农学通报, 2005, 11(3):48-49.
[8] 代新俊, 夏清, 杨珍平, 等. 氮肥后移对强筋小麦氮素积累转运及籽粒产量与品质的影响. 水土保持学报, 2018, 32(3):289-294.
[9] 杨正, 肖思远, 陈思宇, 等. 施氮量对不同油酸含量大花生产量及品质的影响. 河南农业科学, 2021, 50(9):44-52.
[10] 郑永美, 王春晓, 刘岐茂, 等. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31(12):2418-2425.
doi: 10.11869/j.issn.100-8551.2017.12.2418
[11] 王建国, 唐朝辉, 张佳蕾, 等. 播期与施氮量对花生干物质、产量及氮素吸收利用的影响. 植物营养与肥料学报, 2022, 28(3):507-520.
[12] 成艳红, 武琳, 钟义军, 等. 控释肥对稻草覆盖红壤花生产量及土壤有效氮平衡的影响. 土壤学报, 2014, 51(2):306-313.
[13] 丁红, 张冠初, 石程仁, 等. 膜下滴灌追肥对花生生长发育、光合特性及产量的影响. 花生学报, 2020, 49(3):46-51.
[14] 王晓颖, 周宇浩, 邹晓霞, 等. 膜下滴灌追肥时期对花生干物质及氮素积累和产量的影响. 花生学报, 2021, 50(3):40-46.
[15] Nagarjuna P, Venkateswarlu B, Sreerekha M, et al. Effect of crop establishment methods and nitrogen management on growth and yield of rice. International Journal of Agriculture,Environment and Biotechnology, 2021, 14(2):185-189.
[16] 李强, 孔凡磊, 袁继超. 氮肥运筹对不同玉米品种氮素吸收、利用及田间氮平衡的影响. 华北农学报, 2022, 37(4):169-181.
doi: 10.7668/hbnxb.20192665
[17] 罗静静, 王贺亚. 减量施氮及氮肥运筹对春小麦群体结构和产量的影响. 江苏农业科学, 2022, 50(23):62-67.
[18] 张晨霞, 胡大鹏, 张中宁, 等. 缓释氮肥运筹对麦后直播棉株型调节和成铃的影响. 扬州大学学报(农业与生命科学版), 2022, 43(1):88-96.
[19] 沈浦, 冯昊, 罗盛, 等. 缺氮胁迫下含Na+叶面肥对花生生长的抑制及补氮后的恢复效应. 植物营养与肥料学报, 2016, 22(6):1620-1627.
[20] Hou L, Lin R X, Wang X J, et al. The mechanisms of pod zone nitrogen application on peanut pod yield. Russian Journal of Plant Physiology, 2022, 69(3):51.
[21] 李凤霞, 王长军, 郭永忠. 盐碱地农田土壤氮素转化微生物及其影响因素研究进展. 宁夏农林科技, 2020, 61(8):33-36.
[22] 曾勇军, 吕伟生, 潘晓华, 等. 氮肥追施方法和追用时期对超级早稻株型及物质生产的影响. 作物学报, 2014, 40(11):2008-2015.
doi: 10.3724/SP.J.1006.2014.02008
[23] 张翔, 张新友, 张玉亭, 等. 施氮量对不同花生品种生长及干物质积累的影响. 花生学报, 2011, 40(1):23-29.
[24] 刘学良, 修俊杰, 张一楠, 等. 不同氮肥用量对花生生长发育的影响. 农业科技通讯, 2019(3),86-89.
[25] 张甜, 毕振方, 戴常青, 等. 不同时期追肥对花生植株生长动态的影响. 山东农业科学, 2018, 50(6):130-134.
[26] 贾东, 卢晶晶, 孙雅君, 等. 氮肥不同运筹模式对水稻生产及氮肥利用率的影响. 西南农业学报, 2016, 29(3):584-589.
[27] 赵艳, 罗铮, 杨丽, 等. 氮肥运筹对稻茬小麦氮素转运、干物质积累、产量及品质的影响. 麦类作物学报, 2022, 42(8):1001-1011.
[28] 邬刚, 袁嫚嫚, 张青交, 等. 施氮量对砂姜黑土区花生生长、干物质和氮素累积的影响. 中国土壤与肥料, 2015(6):92-95.
[29] 万书波, 张思苏, 刘光臻, 等. 应用15N示踪法对花生氮肥施用时期和方法的研究. 花生科技, 1989(3):24-27.
[30] 肖春燕, 王纯武, 马海新, 等. 新疆北疆单双粒播种模式对不同高油酸花生品种农艺性状及产量的影响. 安徽农学通报, 2021, 27(6):39-42,47.
[31] 周录英, 李向东, 汤笑, 等. 氮、 磷、钾肥不同用量对花生生理特性及产量品质的影响. 应用生态学报, 2007, 18(11):2468-2474.
[32] 杨吉顺, 李尚霞, 张智猛, 等. 施氮对不同花生品种光合特性及干物质积累的影响. 核农学报, 2014, 28(1):154-160.
doi: 10.11869/j.issn.100-8551.2014.01.0154
[33] 隋世江, 张海楼, 张艳君, 等. 施氮方式对连作花生生长发育及产量的影响. 河南农业科学, 2014, 43(11):32-35.
[34] 张智猛, 万书波, 戴良香, 等. 施氮水平对不同花生品种氮代谢及相关酶活性的影响. 中国农业科学, 2011, 44(2):280-290.
[35] 孔洁, 庞茹月, 毕振方, 等. 不同生育时期追肥对花生功能叶片内源激素和籽仁品质的影响. 花生学报, 2021, 50(2):33-37.
[36] 张翔, 张新友, 毛家伟, 等. 施氮水平对不同花生品种产量与品质的影响. 植物营养与肥料学报, 2011, 17(6):1417-1423.
[37] 王艳莹, 唐洪杰, 陈香艳, 等. 不同氮肥用量对花生产量和品质的影响. 农业科技通讯, 2017, 546(6):119-120.
[38] 汤笑. 水氮及其互作对花生生理特性和产量品质的影响. 泰安: 山东农业大学, 2007.
[39] 胡文广, 邱庆树, 李正超, 等. 花生品质的影响因素研究Ⅱ.栽培因素. 花生学报, 2002, 31(4):14-18.
[40] 王才斌, 刘云峰, 吴正锋, 等. 山东省不同生态区花生品质差异及稳定性研究. 中国生态农业学报, 2008, 67(5):1138-1142.
[41] 刘华, 张新友, 崔党群, 等. 花生蛋白质和脂肪含量的主基因+多基因遗传分析. 江苏农业科学, 2011, 39(2):127-130.
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[3] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[4] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[5] Yi Qin, Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan [J]. Crops, 2024, 40(3): 163-167.
[6] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[7] Li Zhi, Guo Xiaoxia, Huang Chunyan, Jian Caiyuan, Tian Lu, Han Kang, Ren Xiaoyun, Ren Huimin, Zhang Peng, Liu Jia, Kong Dejuan, Wang Zhenzhen, Su Wenbin. Effects of Nitrogen Base Fertilizer and Topdressing Ratio on the Growth, Yield and Sugar Content of Sugar Beet under Shallow Buried Drip Irrigation [J]. Crops, 2024, 40(3): 186-191.
[8] Ou Kunpeng, Wang Xueli, Wang Yan, He Minghui, Huang Liankang, Zheng Debo, Lin Qian. Effects of Different Proportions of Nitrogen, Phosphorus and Potassium on Photosynthetic Characteristics, Yield and Quality of Pueraria lobata var. thomsonii [J]. Crops, 2024, 40(3): 216-222.
[9] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[10] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[11] Xie Zhangshu, Xie Xuefang, Zhou Chengxuan, Xu Doudou, Li Jiarui, Tu Xiaoju, Liu Aiyu, Li Fei, Gong Yangcang, He Yunxin, Wei Shangzhi, Wu Bibo, Zhou Zhonghua. A New Cotton Seed Balling Technology and Its Influence on Cotton Seedling Emergence, Yield and Quality [J]. Crops, 2024, 40(3): 257-264.
[12] Hu Qingyuan, Gong Dan, Pan Xiaowei, Wang Suhua, Wang Lixia. Joint Identification of New Varieties (Lines) of Cowpea during 2019-2021 Organized by China Agricultural Research System of Food Legume [J]. Crops, 2024, 40(3): 76-81.
[13] Wang Shen, Fan Baojie, Liu Changyou, Wang Yan, Zhang Zhixiao, Su Qiuzhu, Shi Huiying, Shen Yingchao, Wang Xueqing, Tian Jing. Identification and Evaluation of Yield and Main Agronomic Characteristics of New Mung Bean Varieties [J]. Crops, 2024, 40(3): 90-99.
[14] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[15] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!