Crops ›› 2024, Vol. 40 ›› Issue (4): 194-202.doi: 10.16035/j.issn.1001-7283.2024.04.025

Previous Articles     Next Articles

Investigation on the Diversity of Endophytic Bacteria and Screening of Functional Strains in Waxy Sorghum for Brewing

Hu Lianqing1,2(), Chen Lu1,2, Liu Wenwen1,2, Zhou Wanhai1,2(), Feng Ruizhang1,2, Wei Qin1,2, Zhao Xin1,2, Shu Hao1, Chen Lingmei1, Chen Yuwei3   

  1. 1Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, Sichuan, China
    2Key Laboratory of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin 644000, Sichuan, China
    3Jianyang Agricultural Technology Extension Center, Jianyang 641400, Sichuan, China
  • Received:2023-06-26 Revised:2023-11-10 Online:2024-08-15 Published:2024-08-14

Abstract:

The diversity and community structure of endophytic bacteria in waxy sorghum for brewing were examined and analyzed using pure culture in order to examine the functional traits and community structure of endophytic bacteria of various varieties and tissues from waxy sorghum for brewing during different phenological periods and the choice of culture medium was used to filter the functioning bacteria. The results showed that 183 bacteria were isolated from the hybrid Jinnuoliang 1 and the local variety Qingkeyang, belonging to two phyla, five classes and 17 genera and 39 species. The dominant phyla was Proteobacteria, accounting for 85.79%, and the dominant class was γ-Protea, accounting for 70.49%, the dominant genus was Pseudomonas, accounting for 43.72%, and the dominant species was Pseudomonas sp., accounting for 33.33%. Therefore, endophytic bacteria from waxy sorghum were diverse in varieties and rich in functions. These research indicated that there are significant differences in the composition of unique endophytic bacterial populations among different varieties and tissues from waxy sorghum for brewing during different phenological periods.

Key words: Brewing sorghum, Waxy sorghum, Endophytic bacteria, Community structure, Diversity

Table 1

Colonization and separation rates of the endophytic bacteria isolated from different tissues of waxy sorghum %"

植物组织Plant tissue 品种Variety 生育期Growth stage 定殖率Colonization rate 分离率Separation rate
根Root 金糯粱1号 苗期、花期、蜡熟期 25.33 21.33
青壳洋 苗期、花期、蜡熟期 33.33 37.33
茎Stem 金糯粱1号 苗期、花期、蜡熟期 8.00 26.67
青壳洋 苗期、花期、蜡熟期 18.67 24.00
叶Leaf 金糯粱1号 苗期、花期、蜡熟期 4.00 5.33
青壳洋 苗期、花期、蜡熟期 3.33 2.00
花Flower 金糯粱1号 花期 6.00 6.00
青壳洋 花期 6.00 10.00

Table 2

Composition of endophytic bacteria in waxy sorghum"

相似性最高菌株
The most similar strain
金糯梁1号Jinnuoliang 1 青壳洋Qingkeyang
苗期
Seedling stage
花期
Florescence stage
蜡熟期
Waxy stage
苗期
Seedling stage
花期
Florescence stage
蜡熟期
Waxy stage

Root

Stem

Leaf

Root

Stem

Leaf

Flower

Root

Stem

Leaf

Root

Stem

Leaf

Root

Stem

Leaf

Flower

Root

Stem

Leaf
醋酸钙不动杆菌
Acinetobacter calcoaceticus
- - - - - - - - - - - - - 1 - - - - - -
不动杆菌Acinetobacter sp. - 1 - 1 - - - - - - - - - - - - - - - -
活不动杆菌Acinetobacter vivianii - - - - - - - - - - - - - 4 - - - - - -
堀越氏芽胞杆菌Bacillus horneckiae - - - - - - - - - - - - - - - - - 1 - -
同温层芽孢杆菌Bacillus stratosphericus - - - - - - - - - - - - - - 1 - - - - -
Bacterium - - - - - - - - - - - - - - - - - - 1 1
Bakterija - - - 1 1 - - - - - - - - 1 - - - - - -
唐菖蒲伯克霍尔德氏菌
Burkholderia gladioli
- - - - - - - - 1 - - - - - - - - - 2 -
伯克霍尔德氏菌Burkholderia sp. - - - - - - - 1 - - - - - - - - - - 1 1
热带伯克霍尔德氏菌
Burkholderia tropica
- - - - - - - - 1 - - - - - - - - - 1 -
柠檬酸杆菌Citrobacter sp. - - - - - - - 2 - - - - - - - - - - - 1
贪铜杆菌Cupriavidus sp. - - - - - - - - - - - - - 1 - - - - - -
阿氏肠杆菌Enterobacter asburiae - - - - - - - 1 - - - - - - - - - - - -
阴沟肠杆菌Enterobacter cloacae - - - - - - - - - - - - - - - - - 1 - -
霍氏肠杆菌Enterobacter hormaechei - - - - - - - - - - - - - 1 - - - 1 2 -
科贝肠杆菌Enterobacter kobei - - - - - - - - 1 - - - - - - - - - 1 -
罗根肠杆菌
Enterobacter roggenkampii
- - - - - - - 3 - - - - - - - - - 10 7 -
肠棒杆菌Enterobacter sp. - - - - - - - 1 1 1 - - - 4 - - - - 4 -
香坊肠杆菌
Enterobacter xiangfangensis
- - - - - - - - - - - - - - - - - - 1 -
γ蛋白细菌
Gamma proteobacterium symbiont
- - - - - - - - - - - - - - 1 - - - - -
内生固氮菌
Herbaspirillum frisingense
- - - - - - - - - - - - - - 1 - - - - -
哈特草螺菌Herbaspirillum huttiense - - - - - - - - - - - - - 3 - - 1 - - -
乌头内生菌Herbaspirillum sp. - - - - - - - - - - - - - 2 - - - - - -
Hrizaobakterijum sp. - - - - 2 - - - - - - - - - - - - - - -
肺炎克雷伯菌Klebsiella pneumoniae - - - - - - - - - - - - - - - - - - 1 -
克雷伯氏菌Klebsiella sp. - - - - - - - - - - - - - - 1 - - - - -
Komamonas aquatica - - - 1 - - - - - - - - - - - - - - - -
Metilobakterijum sp. - - - - - - 2 - - - - - - - - - - - - -
Nekulturna bakterija - - - 2 - - 1 - - - - - - - - - - - - -
Nekulturna beta proteobakterijum - - - - - - - - - - - - - 3 - - 2 - - -
Nekulturni Citrobacter sp. - - - 1 - - - - - - - - - 2 - - - - - -
叶杆菌
Phyllobacterium brassicacearum
- - - 1 - - - - - - - - - - - - - - - -
绿针假单胞菌
Pseudomonas chlororaphis
- - - - 1 - - - - - - - - - - - - - - -
荧光假单胞菌
Pseudomonas fluorescens
- - - - - - - 1 - - - - - - - - - - - -
湖南假单胞菌
Pseudomonas hunanensis
- - - - - - - 1 - - - - - - - - - - - -
浅黄色假单胞菌Pseudomonas lurida - - - - 3 - - - - - - - - - - - - - - -
蒙氏假单胞菌Pseudomonas monteilii - - - - 1 - - 2 - - - - - - - - - - - -
变形假单胞菌
Pseudomonas plecoglossicida
- - - - - - - 2 - - - - - - - - - - - -
恶臭假单胞菌Pseudomonas putida - - 1 - 4 - - - - - - 1 - - - - - 1 1 -
假单胞菌Pseudomonas sp. - 12 3 6 10 1 - 3 - - 3 2 - 13 3 - 2 1 - -
葡萄牙根瘤菌Rhizobium lusitanum 2 - - - - - - - - - - - - 1 - - - - - -
根瘤菌Rhizobium sp. - - - - - - - - - - - - - - - - - 1 - -
鞘氨醇单胞菌Sphingomonas echinoides - - 2 - - - - - - - - - - - - - - - - -
Uncultured bacterium - 1 - - - - - - - - - 2 - - - - - 1 2 -

Table 3

Abundance degree, Shannon-Wiener index and dominance degree of endophytic bacteria in different varieties, tissues and growth stages of waxy sorghum"

项目
Item
品种Variety 组织Tissue 生育期Growth stage
金糯粱1号
Jinnuoliang 1
青壳洋
Qingkeyang

Root

Stem

Leaf

Flower
苗期
Seedling stage
花期
Florescence stage
蜡熟期
Waxy stage
丰富度指数Abundance degree (S) 23 27 36 21 6 6 5 22 18
香农指数Shannon-Wiener index (H) 2.2249 2.6459 2.5629 2.3943 1.5811 1.7481 0.9321 2.4410 2.5648
优势度指数Dominance degree (D) 0.7529 0.8822 0.8590 0.8386 0.7407 0.8200 0.4400 0.8160 0.8728

Fig.1

Similarity coefficients of endophytic bacteria in different varieties, tissues and growth stages of waxy sorghum"

Fig.2

Venn diagram of the number of OTU obtained in different cultivars, organizations and periods"

Table 4

Screening of functional endophytic bacteria from waxy sorghum"

菌株
Bacterial strain
产淀粉酶
Amylase
production
产蛋白酶
Protease
production
产脂肪酶
Lipase
production
产果胶酶
Pectinase
production
产纤维素酶
Cellulase
production
产酯酶
Esterase
production
固氮能力
Nitrogen
fixation
溶磷能力
Phosphate
solubilization
不动杆菌Acinetobacter sp. - - + - - - - -
活不动杆菌Acinetobacter vivianii - - + - - - - -
唐菖蒲伯克霍尔德氏菌Burkholderia gladioli + - + - + - - -
伯克霍尔德氏菌Burkholderia sp. - - - - - + - -
热带伯克霍尔德氏菌Burkholderia tropica - - + - - + - -
柠檬酸杆菌Citrobacter sp. - - - - - - - +
贪铜杆菌Cupriavidus sp. + - + - - - - -
阿氏肠杆菌Enterobacter asburiae - - - - - - + -
科贝肠杆菌Enterobacter kobei + - - - - - - -
罗根肠杆菌Enterobacter roggenkampii - + - + - + + -
肠棒杆菌Enterobacter sp. + - - - - - - -
香坊肠杆菌Enterobacter xiangfangensis - - + - - + - -
肺炎克雷伯菌Klebsiella pneumoniae - - - - - - - +
Komamonas aquatica + - - - - - - -
Metilobakterijum sp. + - + - - - - -
浅黄色假单胞菌Pseudomonas lurida + - + - - + - -
蒙氏假单胞菌Pseudomonas mosselii - + - + - - - -
恶臭假单胞菌Pseudomonas putida - + + + - - - -
假单胞菌Pseudomonas sp. + + - + - + + -
根瘤菌Rhizobium sp. - - - - - - + -
[1] Yan K, He L M, Zhou W H, et al. Determination of the community structure and diversity of endophytic bacteria from Alpinia zerumbet seeds. International Journal of Agriculture and Biology, 2020, 24(3):420-428.
[2] 顾美英, 古丽尼沙·沙依木, 张志东, 等. 黑果枸杞不同组织内生细菌群落多样. 微生物学报, 2021, 61(1):152-166.
[3] Mendes R, Kruijt M, De B I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 2011, 332:1097-1100.
doi: 10.1126/science.1203980 pmid: 21551032
[4] Xu W F, Ren H S, Ou T, et al. Genomic and functional characterization of the endophytic Bacillus subtilis 7PJ-16 strain, a potential biocontrol agent of mulberry fruit sclerotiniose. Microbial Ecology, 2019, 77:651-663.
[5] Emami S, Alikhani H A, Pourbabaei A A, et al. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research International, 2019, 26(19):19804-19813.
doi: 10.1007/s11356-019-05284-x pmid: 31090003
[6] Zhu Y L. Isolation and identification of Ammodendron bifolium endophytic bacteria and the action mechanism of selected isolates- induced seed germination and their effects on host osmotic-stress tolerance. Archives of Microbiology, 2019, 201(4):431-442.
[7] Panddey P K, Samanta R, Yadav R N S. Inside the plant: addressing bacterial endophytes in biotic stress alleviation. Archives of Microbiology, 2019, 201(4):415-429.
doi: 10.1007/s00203-019-01642-y pmid: 30834947
[8] 杨敬敬, 韩烁, 王霞, 等. 三倍体毛白杨不同组织内生细菌多样性分析. 微生物学通报, 2022, 49(8):3021-3036.
[9] Ou T, Xu W F, Wang F, et al. A microbiome study reveals seasonal variation in endophytic bacteria among different mulberry cultivars. Computational and Structural Biotechnology Journal, 2019, 17:1091-1100.
doi: 10.1016/j.csbj.2019.07.018 pmid: 31452862
[10] Edwards J, Johnson C, Santos M C, et al. Structure, variation,and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 112(8):911-920.
[11] Ullah A, Akbar A, Luo Q Q, et al. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microbial Ecology, 2018, 77:429-439.
[12] 杨娜, 杨波. 蕙兰根部内生细菌多样性及季节动态变化. 植物科学学报, 2011, 29(2):156-163.
[13] 古丽尼沙·沙依木, 张志东, 杨波, 等. 不同品种苹果树内生细菌群落多样性及功能. 微生物学通报, 2020, 47(2):500-511.
[14] Nassar A H, El-tarabilY K A, Sivasithamparam K. Promotion of plant growth by an auxinproducing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biology & Fertility of Soils, 2005, 42(2):97-108.
[15] Manjunatha B S, Paul S, Aggarwal C, et al. Diversity and tissue preference of osmotolerant bacterial endophytes associated with pearl millet genotypes having differential drought susceptibilities. Microbial Ecology, 2019, 77(3):676-688.
doi: 10.1007/s00248-018-1257-2 pmid: 30209586
[16] 胡连清, 刘雯雯, 刘婉茹, 等. 糯红高粱中产蛋白酶内生酵母筛选鉴定及发酵特性研究. 食品与发酵工业, 2023, 49(5):74-80.
doi: 10.13995/j.cnki.11-1802/ts.033899
[17] 四川省(宜宾市)地方标准. 地理标志产品,宜宾糯红高粱生产技术和质量规范:DB 511500/T 50—2014. 宜宾: 四川省宜宾质量技术监督局, 2014.
[18] 殷勇, 张林, 毛思根, 等. 宜宾糯红高粱绿色生产技术规程. 大麦与谷类科学, 2021, 38(4):43-46.
[19] 何诚, 丁海龙, 杨平, 等. 南北酿酒高粱蒸煮品质研究. 酿酒科技, 2012(8):68-70.
[20] 戴奕杰, 李宗军, 田志强. 酱香型白酒大曲和糟醅的细菌多样性分析. 食品科学, 2019, 40(4):152-159.
doi: 10.7506/spkx1002-6630-20180228-251
[21] 唐佳代, 邱树毅, 王春晓, 等. 贵州地区酿酒小曲细菌多样性比较分析. 中国酿造, 2019, 38(10):55-59.
[22] Liu Z B, Wang Z Y, Lv X C, et al. Comparison study of the volatile profilesand microbial communities of Wuyi Qu and Gutian Qu,two major types oftraditional fermentation starters of Hong Qu glutinous rice wine. Food Microbiology, 2018, 69:105-115.
[23] Cai H Y, Zhang T, Zhang Q, et al. Microbial diversity and chemicalanalysis of the starters used in traditional Chinese sweet rice wine. Food Microbiology, 2018, 73:319-326.
[24] 肖蓓. 酱香大曲中细菌类群关系研究与功能细菌筛选. 贵阳: 贵州大学, 2015.
[25] 应恒, 殷勇, 张林, 等. 施氮量对酿酒糯红高粱宜糯红4号的影响. 农业科技通讯, 2022(6):129-132.
[26] 高菲, 李欣, 刘紫薇, 等. 4种高粱淀粉理化性质的比较分析. 中国粱油学报, 2023, 38(1):71-79.
[27] 刘晓静, 朱静, 楚敏, 等. 库车小白杏采后内生细菌群落代谢特征及结构组成的变化. 食品科学, 2018, 39(22):141-146.
doi: 10.7506/spkx1002-6630-201822022
[28] 徐祥林, 骆海玉, 颜小捷, 等. 罗汉果内生真菌多样性研究. 广西植物, 2020, 40(5):618-627.
[29] 燕平梅, 邢勇, 李娜, 等. 非培养方法研究榨菜中酵母菌的多样性. 中国调味品, 2019, 32(7):58-61.
[30] 王梦亮, 贾岩, 崔晋龙, 等. 锁阳及其寄主白刺内生真菌的生态分布及遗传关系. 应用生态学报, 2017, 28(3):815-820.
doi: 10.13287/j.1001-9332.201703.008
[31] 陈丽莹, 方荣祥, 吴建祥, 等. 植物内生细菌测定方法的研究进展. 微生物学通报, 2022, 49(3):1105-1119.
[32] 沙月霞. 不同水稻组织内生细菌的群落多样性. 微生物学报, 2018, 58(12):2216-2228.
[33] 林标声, 宋昭昭, 张丽丽, 等. 巨菌草不同生长时期根、茎、叶内生细菌组成的多样性及差异. 福建农林大学学报(自然科学版), 2018, 47(3):352-360.
[34] Kiani T, Khan S A, Noureen N, et al. Isolation and characterization of culturable endophytic bacterial community of stripe rust-resistant and stripe rust-susceptible Pakistani wheat cultivars. International Microbiology, 2019, 22(2):191-201.
doi: 10.1007/s10123-018-00039-z pmid: 30810983
[35] 王颜波, 张伟溪, 丁昌俊, 等. 不同生态环境下银中杨内生菌群落结构及生态位变异. 林业科学, 2020, 56(2):48-60.
[36] Zhang Y, Yu X X, Zhang W J, et al. Interactions between endophytes and plants: beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. Journal of Plant Biology, 2019, 62(1):1-13.
doi: 10.1007/s12374-018-0274-5
[37] 宋兆齐, 王莉, 刘秀花, 等. 云南4处酸性热泉中的变形菌门细菌多样性. 河南农业大学学报, 2016, 50(3):376-382.
[38] Nassal D, Spohn M, Eltlbany N, et al. Effects of phosphorus- mobilizing bacteria on tomato growth and soil microbial activity. Plant and Soil, 2018, 427:17-37.
[39] Liu Y P, Tan H M, Cao L X, et al. Rice sprout endophytic Enterobacter sp. SE-5 could improve tolerance of mature rice plants to salt or Cd2+ in soils. Archives of Agronomy and Soil Science, 2018, 66(7):873-883.
[40] Kruasuwan W, Thamchaipenet A. 1-Aminocyclopropane-1- carboxylate (ACC) Deaminase-Producing endophytic diazotrophic Enterobacter sp EN-21 modulates salt-stress response in sugarcane. Journal of Plant Growth Regulation, 2018, 37(3):849-858.
[41] Beaumont M. Flavouring composition prepared by fermentation with Bacillus spp.. International Jourmal of Food Microbiology, 2002, 75(3):189-196.
[42] 范文来, 徐岩. 白酒功能因子与品质安全问题. 酿酒科技, 2012, 2(3):7-12.
[43] 施小明, 徐岩, 崔凤元, 等. 枯草芽孢杆菌在白酒生产中的应用. 酿酒科技, 2012(2):49-53.
[44] Zhi Y, Wu Q, Du H, et al. Biocontrol of geosmin-producing Streptomyces spp.by two Bacillus strains from Chinese liquor. International Journal of Food Microbiology, 2016, 231:1-9.
[45] 刘丹, 陈杰, 罗惠波, 等. 浓香型大曲中的枯草芽孢杆菌对固态混菌发酵体系的扰动效应. 食品与发酵工业, 2021, 47(11):38-44.
doi: 10.13995/j.cnki.11-1802/ts.027067
[46] Eteszmi H, Alkhani H A. Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. European Journal of Plant Pathology, 2018, 150:497-506.
[47] Shen X M, Hu H B, Peng H S, et al. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 2013, 14(1):262-271.
[48] 马荣琴, 曹毅, 周俊雄, 等. 番茄根内生假单胞菌的分离与鉴定. 生物技术, 2015, 25(6):564-568,580.
[49] Tian B Y, Yang J K, Zhang K Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 2007, 61(2):197-213.
pmid: 17651135
[1] Yuan Di, Zhi Hui, Wang Haigang, Zhang Hui, Yao Qi, Liang Hongkai, Wang Junjie, Chen Ling, Diao Xianmin, Jia Guanqing. Genetic Diversity Analysis and Comprehensive Evaluation of Registered Varieties of Foxtail Millet in China [J]. Crops, 2024, 40(4): 14-23.
[2] Li Qingchao, Zhang Dengfeng, Li Chunhui, Yang Shan, Liu Jianxin, Wu Xun. Genetic Diversity Analysis and Comprehensive Evaluation of Maize Landraces in Southwest China [J]. Crops, 2024, 40(4): 24-32.
[3] Dai Han, Shen Tie, Shi Taoxiong, Li Ruiyuan. Genomic SSR Loci Mining and Genetic Diversity Analysis of Camellia oleifera Based on Genome Sequences [J]. Crops, 2024, 40(3): 23-31.
[4] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[5] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
[6] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[7] Chen Lin, Yao Xiaohua, Yao Youhua, Bai Yixiong, Wu Kunlun. Diversity Analysis of Grain Appearance and Quality Traits of Hulless Barley Varieties on the Qinghai-Tibet Plateau [J]. Crops, 2024, 40(2): 213-220.
[8] Yang Yanming, Zhou Yi, Zhang Zijian, Zhao Yang, Li Yajian, Pang Yaqi, Wang Yaxun, Han Wenyu, Liu Jinghui. Effects of Humic Acid and Different Tillage Measures on Carbon Pool and Microbial Community Structure in Saline Alkali Soil [J]. Crops, 2024, 40(1): 157-165.
[9] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[10] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[11] Wang Yueying, Fan Baojie, Cao Zhimin, Wang Yan, Su Qiuzhu, Zhang Zhixiao, Wang Shen, Shi Huiying, Shen Yingchao, Cheng Xuzhen, Liu Changyou, Tian Jing. Genetic Diversity Analysis of Landraces and Improved Varieties of Mung Bean by EST-SSR Markers [J]. Crops, 2024, 40(1): 73-79.
[12] Ao Jincheng, Wang Zheng, Yang Qigang, Li Zhi, Wei Jianyu. Response of Soil Bacterial Community Structure and Functional Diversity to Flue-Cured Tobacco Continuous Cropping [J]. Crops, 2023, 39(6): 127-134.
[13] Zhao Feng, Bao Qijun, Pan Yongdong, Liu Xiaoning, Zhang Huayu, Niu Xiaoxia. Comprehensive Evaluation of Genetic Diversity in 70 Barley Germplasms [J]. Crops, 2023, 39(6): 54-61.
[14] Yang Enze, Wang Shuyan, Liu Ruixiang, Shi Fengyuan, Zhang Jinhao, Li Jiana, Li Zhiwei, Guo Zhanbin. Genetic Diversity Analysis of Quinoa Germplasm Resources Based on SRAP [J]. Crops, 2023, 39(6): 79-85.
[15] Zhu Wenjuan, Ren Yuemei, Yang Zhong, Guo Ruifeng, Zhang Shou, Ren Guangbing. Structure and Predicted Functional Analysis of Microbial Community of Millet Soil [J]. Crops, 2023, 39(5): 170-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!