Crops ›› 2020, Vol. 36 ›› Issue (1): 124-129.doi: 10.16035/j.issn.1001-7283.2020.01.020

Previous Articles     Next Articles

Projection of Climate Change on the Planting Distribution of Silage Maize in Northwest Hebei Province

Xu Hanlin1,Liu Yao1,Yuan Xiaofeng1,Pan Jie2,Weng Qiaoyun1,Lü Aizhi1,Liu Yinghui1()   

  1. 1College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000,Hebei, China
    2Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-07-05 Revised:2019-07-28 Online:2020-02-15 Published:2020-02-23
  • Contact: Yinghui Liu E-mail:leely519@126.com

Abstract:

Based on the potential climate factors affecting the distribution of silage maize planting areas and combined with the geographical distribution of silage maize planting areas in Northwest Hebei Province, climate suitability was studied by using ArcGIS 9.3 technology maximum entropy model. The results showed that the distribution pattern of silage maize planting area in Zhangjiakou area from North to Southeast was "Optimum area—suitable area—less suitable area—unsuitable area". The results showed that optimum suitable area is 28.16%. Early-maturing varieties are recommended to be planted; suitable area is 57.72%. Late-maturing varieties are suitable for middle-late-maturing varieties; less suitable area is 9.65%. It is suggested that medium-maturing varieties should be planted; unsuitable area is 4.46%. It is suggested that silage maize should be reduced and grapes be replaced. With the continuous increase of accumulated temperature and annual average temperature above 10℃ in 1986-2050, precipitation showed a trend of rising first (2030s) and then decreasing (2050s). Combining with the climate scenario data of 2030s and 2050s, the future climate scenarios of 2030s and 2050s will affect the potential planting area layout of silage maize in Northwest Hebei, which is the suitable area for silage maize. The planting area tends to decrease gradually with the future climate change, while the unsuitable area tends to expand from South to North.

Key words: Silage maize, Climate change, Climate suitability, Planting area distribution

Table 1

Meteorological changes in counties and districts in Northwest Hebei"

地区
Area
年平均温度(℃)
Average annual temperature
≥10℃积温(℃)
≥10℃ accumulated temperature
降水量(mm)
Precipitation
Bs 2030s 2050s Bs 2030s 2050s Bs 2030s 2050s
赤城Chicheng 5.01 6.40 7.46 2 951.14 3 295.11 3 492.37 474.40 511.55 463.91
崇礼Chongli 4.38 5.74 6.81 2 854.78 3 177.86 3 376.73 429.78 485.76 430.37
沽源Guyuan 1.42 2.80 3.84 2 285.76 2 588.66 2 778.63 434.97 482.93 434.13
怀安Huaian 6.41 7.78 8.82 3 264.12 3 600.78 3 810.48 409.98 467.90 419.54
怀来Huailai 7.86 9.22 10.28 3 535.04 3 925.09 4 127.01 492.23 538.56 493.53
康保Kangbao 0.31 1.69 2.68 2 093.42 2 375.17 2 543.01 399.20 466.98 421.11
尚义Shangyi 4.05 5.39 6.40 2 791.20 3 091.69 3 265.21 397.94 464.18 422.88
万全Wanquan 5.65 7.00 8.05 3 125.00 3 451.74 3 649.79 405.49 469.44 419.26
蔚县Yu county 6.31 7.69 8.71 3 170.38 3 521.17 3 729.71 489.88 531.66 492.36
宣化Xuhua 6.39 7.77 8.83 3 254.17 3 597.16 3 809.25 433.66 484.35 434.87
阳原Yangyuan 6.42 7.82 8.85 3 243.78 3 587.69 3 801.08 432.30 476.06 428.86
张北Zhangbei 3.22 4.57 5.61 2 639.40 2 946.46 3 131.40 408.69 475.71 423.41
张家口Zhangjiakou 6.14 7.51 8.57 3 217.44 3 559.08 3 763.87 427.67 480.35 429.38
涿鹿Zhuolu 7.25 8.62 9.67 3 374.05 3 743.58 3 956.34 488.44 538.06 494.56

Fig.1

Current situation of potential planting and distribution of silage maize in Northwest Hebei"

Fig.2

Potential planting distribution of silage maize in Northwest Hebei in 2030s"

Fig.3

Potential planting distribution of silage maize in Northwest Hebei in 2050s"

Fig.4

Changes of silage maize planting areas from Bs to 2050s"

[1] 赵俊芳, 孔祥娜, 姜月清 , 等. 基于高时空分辨率的气候变化对全球主要农区气候生产潜力的影响评估. 生态环境学报, 2019,28(1):1-6.
[2] 贾超杰 . 基于GIS的中国玉米种植区适宜等级划分及未来变化趋势. 兰州:兰州大学, 2011.
[3] 刘志娟, 杨晓光, 吕硕 , 等. 气候变化背景下东北三省春玉米产量潜力的时空特征. 应用生态学报, 2018,29(1):103-112.
[4] 初征, 郭建平, 赵俊芳 . 东北地区未来气候变化对农业气候资源的影响. 地理学报, 2017,72(7):1248-1260.
[5] 李萌, 申双和, 吕厚荃 , 等. 气候变化情景下黄淮海区域热量资源及夏玉米温度适宜度. 大气科学学报, 2016,39(3):391-399.
[6] 孙跃飞, 吴伟光, 顾润香 , 等. 张家口作物生长季气候资源变化及特色农业. 中国农学通报, 2015,31(2):181-186.
[7] 吴伟光 . 张家口市气候变化及农业气象灾害的防御//S10气象与现代农业发展. 北京:中国气象学会, 2012.
[8] Kriticos D J, Randall R P . A comparison of systems to analyse potential weed distributions. Weed Risk Assessment, 2001: 61-79.
[9] Guisan A, Thuiller W . Predicting species distribution:offering more than simple habitat models. Ecology Letters, 2005,8(9):993-1009.
[10] Elith J, Graham C H, Anderson R P , et al. Novel methods improve prediction of species’ distribution from occurrence data. Ecography, 2006,29(2):129-151.
[11] 孙文涛, 刘雅婷 . 生物入侵风险分析的研究进展. 中国农学通报, 2010,26(7):233-236.
[12] Phillips S J, Dudik M, Schapire R E . A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning, 2004,83:655-662.
[13] 何奇瑾 . 我国玉米种植分布与气候关系研究. 南京:南京信息工程大学, 2012.
[14] 陈禹衡, 吕一维, 殷晓洁 . 气候变化下西南地区12种常见针叶树种适宜分布区预测. 南京林业大学学报(自然科学版), 2019,43(6):113-120.
[15] 周扬, 易雨君, 杨雨风 , 等. 基于最大熵模型预测水杨柳的潜在生境分布. 水利水电技术, 2019,50(5):73-81.
[16] 李军, 王星宇, 马全伟 , 等. 冀西北玉米种植业结构调整策略与建议. 农业科技通讯,2016(12):6-8.
[17] Thomson A M, Calvin K V, Smith S J , et al. RCP4. 5:a pathway for stabilization of radiative forcing by 2100. Climatic Change, 2011,109:77-94.
[18] 吴佳, 高学杰 . 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报, 2013,56(4):1102-1111.
[19] 毛留喜, 赵俊芳, 徐玲玲 , 等. 我国“镰刀弯”地区春玉米种植的气候适宜性与调整建议. 应用生态学报, 2016,27(12):3935-3943.
[20] 何奇瑾, 周广胜, 隋兴华 , 等. 1961-2010年中国春玉米潜在种植分布的年代际动态变化. 生态学杂志, 2012,31(9):2269-2275.
[21] 何奇瑾, 周广胜 . 我国春玉米潜在种植分布区的气候适宜性. 生态学报, 2012, 32(12):3931- 3934, 3937-3939.
[22] Manning M R, 戴晓苏 . IPCC第四次评估报告中对不确定性的处理方法. 气候变化研究进展, 2006,2(5):233-237.
[1] Hua Yan,Zhongwen Yan,Jie Lei. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Bai Lanfang,Zhang Xiangqian,Wang Rui,Wang Ya'nan,Ye Xuesong,Wang Yufen,Li Juan,Zhang Dejian. Study on Photosynthetic Characteristics, Yield and Quality of Different Maize Varieties [J]. Crops, 2020, 36(1): 154-160.
[3] Zhuang Kezhang,Wu Ronghua,Zhang Chunyan,Xu Lihua,Xu Xiangbo,Ding Yi,Wang Zhennan. Effects of Density on Yield and Nutritional Value of Different Types of Silage Maize [J]. Crops, 2019, 35(6): 140-144.
[4] Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan. Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits [J]. Crops, 2019, 35(3): 42-48.
[5] Gao Wenjun,Yang Guoyi,Gao Xinzhong,Yu Zhu,Xu Qingfang,Yuan Xiangyang,Sun Yaowu. The Effects of Nitrogen, Phosphorus, or Potassium Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[6] Yinghui Liu,Ming Guo,Shuli Jia,Jianguo Yin. Advance on the Factors Effecting on Maize Forage Nutritive Value [J]. Crops, 2018, 34(2): 6-10.
[7] Xiayan Chen,Lianxi Wang,Jingquan Ren,Chunming Guo,Qi Li,Yingying Li. Analysis on Potential Productivity and Climatic Influence Factors of Spring Maize in Jilin [J]. Crops, 2016, 32(6): 91-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[3] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[4] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .
[5] . [J]. Crops, 1985, 1(2): 9 -10 .
[6] . [J]. Crops, 1995, 11(2): 36 -38 .
[7] . [J]. Crops, 1997, 13(5): 13 -15 .
[8] . [J]. Crops, 2010, 26(4): 73 -76 .
[9] . [J]. Crops, 2010, 26(1): 36 -39 .
[10] . [J]. Crops, 2010, 26(1): 61 -65 .