Crops ›› 2020, Vol. 36 ›› Issue (3): 177-183.doi: 10.16035/j.issn.1001-7283.2020.03.027

Previous Articles     Next Articles

Research on the Method of Extracting Crop Vegetation Coverage Using UAV Remote Sensing Technology

Wang Meng1,2, Sui Xueyan1,2, Liang Shouzhen1,2, Hou Xuehui1,2, Liang Yongquan3   

  1. 1Shandong Institute of Agriculture Sustainable Development, Jinan 250100, Shandong, China
    2Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan 250100, Shandong, China
    3Shandong Key Laboratory of Wisdom Mine Information Technology, Qingdao 266590, Shandong, China
  • Received:2019-11-04 Revised:2019-11-26 Online:2020-06-15 Published:2020-06-10

Abstract:

Remote sensing information acquisition technology based on unmanned aerial vehicle (UAV) has been widely used in agriculture. The use of drone platform to obtain crop remote sensing information is one of the most important methods of obtaining farmland information in precision agriculture. It is characterized by high aging, high resolution, low cost, fast and accurate. UAV remote sensing technology is used to obtain visible light image, cotton, peanut and maize were selected as research materials, different vegetation indices were selected for visible image threshold segmentation. Combined with the supervised classification results of visible light images in the study area, the method of extracting vegetation coverage from vegetation indices of three crops was determined. The experimental results showed that the vegetation index coverage could be effectively extracted using vegetation index threshold classification method. The verification results showed that the method has high precision for extracting vegetation cover information from cotton, peanut and maize.

Key words: UAV, Crop, Coverage, Extraction, Vegetation index

Fig.1

Vegetation coverage extraction results of each vegetation index"

Table 1

Precision analysis of vegetation coverage %"

植被指数
Vegetation index
EXG VDVI RGRI BGRI RGBVI
地面照片
Ground photo
93.67 98.12 97.89 89.71 98.01

Fig.2

Flow chart of vegetation coverage extraction"

Fig.3

Statistical histogram of VDVI in cotton, peanut and maize"

Fig.4

Extraction of vegetation coverage of cotton, peanut and maize test areas"

Table 2

Precision evaluation of maize supervised classification"

地物Ground object 玉米(像元)Maize (pixel) 土壤(像元)Soil (pixel) 样本总数Total sample size 用户精度User accuracy
玉米(像元)Maize (pixel) 29 611 54 29 665 0.9981
土壤(像元)Soil (pixel) 257 22 405 22 662 0.9886
样本总数Total sample size 29 868 22 459 52 327
生产者精度Producer accuracy 0.9914 0.9976

Table 3

Accuracy analysis of vegetation coverage in the experimental areas %"

植被覆盖度
Vegetation coverage
棉花
Cotton
花生
Peanut
玉米
Maize
监督分类Supervised classification 54.80890 35.00390 69.71960
VDVI阈值分类
VDVI threshold classification
55.59880 36.18230 71.09840
绝对误差Absolute error 0.78993 1.17843 1.37882
误差Error 1.44124 3.36658 1.97767

Table 4

Accuracy analysis of vegetation coverage in validation areas %"

植被覆盖度
Vegetation coverage
棉花
Cotton
花生
Peanut
玉米
Maize
监督分类Supervised classification 57.00270 35.43940 69.03740
VDVI阈值分类
VDVI threshold classification
57.99880 36.98030 71.16510
绝对误差Absolute error 0.99610 1.54090 2.12770
误差Error 1.74746 4.34798 3.08195
[1] 陈仲新, 任建强, 唐华俊 , 等. 农业遥感研究应用进展与展望. 遥感学报, 2016,20(5):748-767.
[2] 宋清洁, 崔霞, 张瑶瑶 , 等. 基于小型无人机与MODIS数据的草地植被覆盖度研究——以甘南州为例. 草业科学, 2017,34(1):40-50.
[3] 戴建国, 张国顺, 郭鹏 , 等. 基于无人机遥感可见光影像的北疆主要农作物分类方法. 农业工程学报, 2018,34(18):122-129.
[4] 郭鹏, 武法东, 戴建国 , 等. 基于无人机可见光影像的农田作物分类方法比较. 农业工程学报, 2017,33(13):112-119.
[5] 高林, 杨贵军, 李红军 , 等. 基于无人机数码影像的冬小麦叶面积指数探测研究. 中国生态农业学报, 2016,24(9):1254-1264.
[6] 丁雷龙, 李强子, 杜鑫 , 等. 基于无人机图像颜色指数的植被识别. 国土资源遥感, 2016,78(1):78-86.
[7] Bendig J, Yu K, Aasen H , et al. Combining UAV- based plant height from crop surface models,visible,and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 2015,39:79-87.
doi: 10.1016/j.jag.2015.02.012
[8] Kyratzis A C, Skarlatos D P, Menexes G C , et al. Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed mediterranean environment. Frontiers in Plant Science, 2017,8:1-14.
[9] Wei L X, Yang B, Jiang J P , et al. Vegetation filtering algorithm for UAV- borne lidar point clouds:acase study in the middle- lower Yangtze River riparian zone. International Journal of Remote Sensing, 2017,38(8/9/10):2991-3002.
doi: 10.1080/01431161.2016.1252476
[10] 汪小钦, 王苗苗, 王绍强 , 等. 基于可见光波段无人机遥感的植被信息提取. 农业工程学报, 2015,31(5):152-159.
[11] 赵健赟 . 地表植被覆盖度遥感估算及其气候效应研究进展. 测绘与空间地理信息, 2015,38(8):77-80.
[12] Song W J, Mu X H, Ruan G Y , et al. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. International Journal of Applied Earth Observation and Geoinformation, 2017,58:168-176.
doi: 10.1016/j.jag.2017.01.015
[13] 牛亚晓, 张立元, 韩文霆 , 等. 基于无人机遥感与植被指数的冬小麦覆盖度提取方法. 农业机械学报, 2018,49(4):212-221.
[14] Jia K, Liang S L, Gu X F , et al. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide fieldview data. Remote Sensing of Environment, 2016,177(5):184-191.
doi: 10.1016/j.rse.2016.02.019
[15] Choi S, Heuk J S, Yeon C D . Estimation of fractional vegetation cover in sand dunes using multi-spectral images from fixedwing UAV. Journal of the Korean Society of Survey,Geodesy,Photogrammetry, and Cartography, 2016,34(4):431-441.
[16] 李冰, 刘镕源, 刘素红 , 等. 基于低空无人机遥感的冬小麦覆盖度变化监测. 农业工程学报, 2012,28(13):160-165.
[17] 赵静, 杨焕波, 兰玉彬 , 等. 基于无人机可见光图像的夏季玉米植被覆盖度提取方法. 农业机械学报, 2019,50(5):232-240.
[18] 童威 . 基于ENVI的遥感影像监督分类方法的研究. 科技创新与应用, 2019,36(23):6-9.
[19] Gamon J A, Surfus J S . Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 1999,143(1):105-117.
doi: 10.1046/j.1469-8137.1999.00424.x
[20] Sellaro R, Crepy M, Trupkin S A , et al. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiology, 2010,154(1):401-409.
doi: 10.1104/pp.110.160820
[21] Claverie M, Demarez V, Duchemin B , et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 2012,124:844-857.
doi: 10.1016/j.rse.2012.04.005
[22] Peng D L, Huete A R, Huang J F , et al. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. International Journal of Applied Earth Observation and Geoinformation, 2011,13(1):13-23.
doi: 10.1016/j.jag.2010.06.001
[1] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[2] Chen Ye,Nan Jing,Su Caijuan,Ma Yinshan,Wei Ning,Jing Yuxia. Effects of Astragalus membranaceus Root Water Extract on Seed Germination and Seedling Growth of Four Crops [J]. Crops, 2020, 36(2): 188-193.
[3] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles [J]. Crops, 2019, 35(6): 1-7.
[5] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[6] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
[7] Gao Shuguang,Xu Bohan,Zhao Hui,Ni Yunxia,Li Weifeng,Wang Ruixia,Xu Dongyang,Yang Guangyu,Liu Hongyan. Analysis of Cellulase Activities of Macrophomina phaseolina in Sesame [J]. Crops, 2019, 35(4): 196-202.
[8] Zhong Dasen,Zhao Ming,Zhang Zhao. Organization and Implementation Progress of National Key Research and Development Program "Science and Technology Innovation for High Yield and Efficiency of Crop" [J]. Crops, 2019, 35(3): 1-9.
[9] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops [J]. Crops, 2019, 35(2): 1-7.
[10] Lilei Guo,Jialin Zhu,Shixian Sun,Shuo Yan. Biosafety of Transgenic Crop: Research and Constraint of Potential Ecological Risk of Gene Flow [J]. Crops, 2019, 35(2): 8-14.
[11] Yong Cui,Ziqing Ma,Enping Tian. Analysis on the Development of Agricultural Production in Central and Southern Mountainous Areas of Ningxia in Recent 20 Years [J]. Crops, 2019, 35(2): 28-38.
[12] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[13] Yu Bai,Xueying Han,Haiyang Dong,Sudu Wuyun,Bingzhen Li,Guilin Chen. Effects of Rotation and Agronomic Measures on Reducing the Damage of Orobanche cumana [J]. Crops, 2019, 35(2): 192-196.
[14] Yimin Wei. Discovery and Chronological Analysis of Buckwheat Kernel in Donghuishan Ruins [J]. Crops, 2019, 35(1): 85-89.
[15] Wu Hao,Li Yanmin,Xie Chuanxiao. Research Advances on Physiological Basis and Gene Discovery for Thermal Tolerance in Crops [J]. Crops, 2018, 34(5): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!