Crops ›› 2021, Vol. 37 ›› Issue (1): 112-117.doi: 10.16035/j.issn.1001-7283.2021.01.016

Previous Articles     Next Articles

Developing and Screening of Chemical Regulator for Cotton Topping

Sun Zhengran(), Wu Hao, Zhang Cuiping, Zhang Jinli, He Daohua()   

  1. College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
  • Received:2020-05-14 Revised:2020-11-05 Online:2021-02-15 Published:2021-02-23
  • Contact: He Daohua E-mail:973605160@qq.com;daohuahe@nwafu.edu.cn

Abstract:

Topping by chemical regulator can inhibit the apical dominance and endless growth, and facilitate the efficient and simplified cultivation (ESC) management practices in cotton production. The appropriate chemical reagent and solution for cotton topping is the key to ESC management. In this study, three kinds of solution (Z1, Z3, and Z4) were made, along with three commercial regulators, flumetralin (Z2), DPC+ (Z5), and N-dimethyl piperidinium chloride (DPC, Z6), purchased in the agri-supplies-market, were sprayed at flowering-bolling stage (July 26th) (control: no topping). At the boll-open stage, plant height, height of first branch, the fruit branch length of upper part of plant (9th sympodial branch), middle part (5th sympodial branch) and lower part (2nd sympodial branch), yield traits, and fiber quality were investigated and statistically analyzed. The results showed that all the different chemical topping reagents could inhibit the plant height and the height of the first fruit branch, and reduced the length of the upper fruit branch. Different chemical topping reagents increased the effective number of bolls of the cotton plant and the fiber yield, but they did not decrease the quality of cotton fiber. The chemical topping reagent Z4 had the best effect on plant type, yield and quality.

Key words: Cotton, Chemical regulator for topping, Agronomic characteristic, Economic characteristic

Table 1

Components of reagent and experimental treatment for chemical topping"

处理
Treatment
组分
Component
剂量
Dose
H2O
(kg/hm2)
Z1 98%缩节胺11.5g,5.6g KOH,50g乙醇,30%聚丙烯酸水溶液24g 1 500g/hm2 300~450
Z2 氟节胺 600mL/hm2 450~600
CK 不打顶
Z3 110.75g氟节胺,二甲苯溶液,乳化剂,二甲基甲酰胺 1 500g/hm2 300~450
Z4 19.9g缩节胺,40%的乙烯利13.27g,2.65g水杨酸钠,0.48g环烷酸锌,10.62g乳化剂 1 110g/hm2 300~450
Z5 增效缩节胺DPC+ 150g/hm2 300~450
Z6 缩节胺粉剂DPC 300g/hm2 300~450

Table 2

Effects of different chemical-topping reagents on plant height"

处理
Treatment
7-26 8-06 8-16 8-26 9-26
Z1 68.2±1.4a 72.5±1.7a 72.7±1.8a 71.5±1.7a 74.0±1.9a
Z2 66.7±1.6ab 73.6±2.1a 74.0±2.0a 74.0±2.0a 77.8±2.1a
CK 62.1±2.9b 73.7±3.9a 74.7±3.8a 75.5±3.8a 79.1±3.9a
Z3 67.0±1.7ab 71.6±1.9ab 71.6±1.9ab 71.7±1.9a 74.5±2.0a
Z4 64.4±1.5ab 66.3±1.6bc 66.4±1.5bc 65.7±1.5b 67.3±1.4b
Z5 62.4±1.3b 64.9±1.3c 63.9±1.3c 64.4±1.3b 66.3±1.4b
Z6 61.9±1.6b 63.9±1.7c 64.4±1.5c 64.4±1.6b 66.4±1.6b

Fig.1

Effects of different chemical-topping reagents on plant height of cotton"

Table 3

Effects of different chemical-topping reagents on height of the first sympodial branch and length of sympodial branch cm"

处理
Treatment
果枝始节高
Height of the first
sympodial branch
果枝长度
Length of sympodial branch
上部
Upper
中部
Middle
下部
Lower
Z1 17.2±0.6a 21.1±2.7a 22.4±2.7a 12.9±2.4a
Z2 16.6±0.5a 20.7±2.9ab 19.0±2.9b 11.5±3.1a
CK 17.6±0.7a 22.7±2.1a 21.3±1.9ab 14.6±2.5a
Z3 16.1±0.7a 22.1±1.7a 20.9±1.2ab 14.1±1.3a
Z4 14.5±0.6b 14.1±2.2b 21.2±1.5ab 12.0±2.2a
Z5 14.2±0.7b 21.4±3.1ab 21.2±2.8ab 11.8±2.8a
Z6 15.9±1.4ab 20.6±2.1ab 20.5±2.5ab 13.9±2.8a

Fig.2

Effects of different chemical-topping reagents on length of sympodial branch"

Table 4

Effect of different chemical topping reagents on yield traits"

处理
Treatment
单株铃数Number of bolls per plant 铃重
Boll weight (g)
籽指
Seed index (g)
衣指
Lint index (g)
衣分
Lint percentage (%)
籽棉产量
Seed cotton yield (kg/hm2)
内围Inner 外围Outer
Z1 4.7±0.5a 4.1±0.9a 5.30±0.2a 10.5±0.2bc 7.24±0.4ab 40.88±0.1a 3 194.4±856.5b
Z2 5.4±0.9a 4.3±1.2a 5.67±0.1a 11.5±0.2a 8.24±0.2a 41.08±0.1a 3 453.2±390.0b
CK 4.6±0.5a 2.7±0.9a 5.80±0.4a 10.5±0.1bc 7.47±0.3ab 42.31±0.1a 2 959.1±348.0c
Z3 5.4±0.3a 3.7±0.8a 5.54±0.4a 11.2±0.7ab 8.23±0.8a 41.74±0.1a 3 953.3±741.0ab
Z4 5.5±0.5a 4.5±0.8a 5.60±0.6a 10.2±0.1c 7.70±0.1ab 41.50±0.1a 3 994.2±160.5a
Z5 4.8±0.4a 4.2±0.8a 5.37±0.2a 11.6±0.2a 7.95±0.3ab 40.29±0.1a 3 236.9±487.5b
Z6 4.9±0.6a 3.9±1.1a 5.48±0.1a 10.5±0.1bc 6.74±0.1b 39.41±0.1a 3 378.6±330.0b

Table 5

Effects of different chemical-topping reagents on the fiber quality"

处理
Treatment
纤维长度
Length (mm)
整齐度指数
Uniformity (%)
断裂比强度
Strength (cN/tex)
马克隆值
Micronaire
伸长率
Elongation (%)
反射率
Reflection (%)
黄度
Yellowness
纺纱均匀性指数
Spinning consistent
Z1 25.8±0.7c 80.3±1.1b 29.2±1.3a 5.3±0.1a 6.3±0.1bc 69.8±1.1a 9.1±0.3a 101.7±8.7b
Z2 27.1±0.6abc 83.8±0.4ab 29.8±1.3a 4.9±0.1ab 6.4±0.1ab 71.5±0.7a 8.9±0.3a 127.3±7.4ab
CK 28.4±0.3a 85.5±0.3a 31.3±0.6a 5.0±0.1ab 6.2±0.1bc 69.2±1.2a 8.3±0.2a 139.0±3.5a
Z3 28.0±0.5ab 83.0±0.5ab 29.9±0.2a 5.0±0.2ab 6.4±0.2ab 71.3±1.0a 8.7±0.3a 124.0±1.5ab
Z4 28.1±0.5ab 82.8±1.1ab 28.3±0.5a 4.8±0.3ab 6.7±0.1a 68.8±0.2a 8.8±0.3a 115.0±4.5ab
Z5 26.3±1.1bc 81.4±2.4ab 29.3±1.1a 4.9±0.2ab 5.9±0.1c 68.8±0.8a 8.8±0.5a 110.7±16.4ab
Z6 27.8±1.6abc 82.6±1.1ab 31.4±1.6a 4.6±0.1b 6.2±0.1bc 68.2±1.5a 9.3±0.2a 126.7±9.5ab
[1] 董红强, 李平, 肖海兵. 一种棉花打顶剂及其制备方法:CN109197886A. 2019-01-15.
[2] 张晓东. 棉花花铃期生育特点与肥水管理. 农民致富之友, 2018(6):58.
[3] 陈刚, 龚江, 徐庆生. 新疆棉花调控技术简介. 甘肃农业, 2006(4):256.
[4] 周欢, 彭龙, 原保忠, 等. 棉花打顶和保留营养枝的效应研究. 中国农学通报, 2011,27(33):166-170.
[5] 郭良, 张建军, 石国元, 等. 对南疆棉花打顶时间的认识. 新疆农业科技, 2005(6):19.
[6] 瞿端阳, 王维新. 新疆棉花机械打顶现状及发展趋势分析. 新疆农机化, 2012(1):36-38.
[7] 史增录, 杨莹, 丁永前, 等. 新疆棉花机械化打顶关键技术的发展现状研究. 安徽农业科学, 2014,42(35):12746-12748,12751.
[8] 牛巧鱼. 我国棉花机械打顶研究进展. 中国棉花, 2013,40(11):23-24.
doi: 1000-632X(2013)11-0023-02
[9] 罗昕, 胡斌, 王维新, 等. 3MDZK-12型组控式单行仿形棉花打顶机. 新疆农机化, 2008(6):23-24,31.
[10] 唐军, 罗昕, 胡斌, 等. 3MDZK-12型单行仿形棉花打顶机的结构设计与性能试验研究. 石河子大学学报(自然科学版), 2008(4):511-514.
[11] 石忠健, 崔建强, 张栋海. 化学打顶剂棉田应用效果. 农村科技, 2018(11):25-27.
[12] 李新裕, 陈玉娟. 新疆垦区长绒棉化学封顶取代人工打顶试验研究. 中国棉花, 2001(1):11-12.
[13] 赵强, 周春江, 张巨松, 等. 化学打顶对南疆棉花农艺和经济性状的影响. 棉花学报, 2011,23(4):329-333.
doi: 1002-7807(2011)04-0329-05
[14] 苏成付, 邱新棉, 王世林. 烟草抑芽剂氟节胺在棉花打顶上的应用. 浙江农业学报, 2012,24(4):545-548.
[15] 董春玲. 棉花喷施氟节胺化学打顶剂对植株农艺及经济性状影响的研究. 石河子:石河子大学, 2013.
[16] 黄险峰, 江绍龙. 我国棉花生产机械化技术的现状和对策. 南方农机, 2014(5):39-40.
[17] 武建设, 陈学庚. 新疆兵团棉花生产机械化发展现状问题及对策. 农业工程学报, 2015,31(18):5-10.
[18] 李亚兵, 韩迎春, 冯璐, 等. 我国棉花轻简化栽培关键技术研究进展. 棉花学报, 2017,29(S1):80-88.
[19] 杨成勋, 张旺锋, 徐守振, 等. 喷施化学打顶剂对棉花冠层结构及群体光合生产的影响. 中国农业科学, 2016,49(9):1672-1684.
doi: 10.3864/j.issn.0578-1752.2016.09.004
[20] 韩焕勇, 杜明伟, 王方永, 等. 北疆棉区增效缩节胺应用剂量对棉花农艺和经济性状的影响. 西南农业学报, 2019,32(2):327-330.
[21] 茅凤麟, 马新. 化学打顶对棉花产量、纤维品质及经济效益的影响. 新疆农垦科技, 2019,42(9):27-29.
[22] 王刚, 张鑫, 陈兵, 等. 棉花化学打顶剂在新疆的推广应用现状及发展策略. 中国植保导刊, 2016,36(1):76-80,75.
[1] Zhang Wen, Liu Quanyi, Zeng Qingtao, Cai Xiaoli, Feng Yang, Lu Tao. Effects of Different Row Spacings on Boll Characteristics and Fiber Quality of Machine Picked Cotton [J]. Crops, 2021, 37(2): 147-152.
[2] Zhou Jiang, Xie Yizhang, Xiang Ping'an. Emergy Analysis of Inputs and Outputs of Major Field Crop Ecosystems in Hunan Province [J]. Crops, 2021, 37(1): 175-181.
[3] Bai Wei, Hu Yang, Yang Sumei, Zhang Baoying, Cui Jinli, Jin Tao, Bai Haihua. Analysis on Agronomic Characteristics of Confectionery Sunflower Local Resources in Northwest Hebei [J]. Crops, 2021, 37(1): 54-59.
[4] Xu Lin, Wu Kaichao, Pang Tian, Deng Zhinian, Zhang Ronghua, Huang Chengfeng, Huang Hairong, Li Yijie, Liu Xiaoyan, Qin Wenxian, Wang Weizan. Effects of Root Promoting Agent on the Development and Yield in Single Bud of Sugarcane [J]. Crops, 2020, 36(6): 132-136.
[5] Qin Hongde, Rong Yihua, Huang Xiaoli, Hu Aibing, Zhou Jiahua, Yan Xianhui, Li Wei, Zhang Xianhong, Li Hongju, Yang Guozheng. Responses of Cotton to Planting Densities and Nitrogen Rates under Direct Seeding in Summer with Simplified Fertilization [J]. Crops, 2020, 36(4): 127-134.
[6] Zhang Qian, Li Yaofa, Wang Shulin, Wang Yan, Feng Guoyi, Lin Yongzeng, Liang Qinglong, Lei Xiaopeng, Qi Hong. Effects of Strip-Planting of Cotton-Wheat on Cotton Aphid [J]. Crops, 2020, 36(4): 206-210.
[7] Yuan Changkai, Luo Haihua, Chen Gong, Gao Xin, Peng Jinjian, Xiang Chunling, Yin Mengyao, Wang Peipei, Xu Lanlan, Tang Feiyu. The Difference of Seed Germination in Different Cotton Genotypes in Response to Copper Stress [J]. Crops, 2020, 36(3): 53-59.
[8] Wang Yan,Wang Shulin,Zhang Qian,Feng Guoyi,Lei Xiaopeng,Liang Qinglong,Qi Hong. Correlation Analysis between Main Agronomic Traits and Density in Mechanical Harvest Cotton [J]. Crops, 2019, 35(6): 66-70.
[9] Shuai Jingtong,Pei Xiaodong,Li Juan,Zhang Yiyang. Effects of Furrowing and Ridging Measures on the Quality of Tobacco-Planting Soils and Output Value of Flue-Cured Tobacco [J]. Crops, 2019, 35(6): 114-119.
[10] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province [J]. Crops, 2019, 35(5): 1-8.
[11] Abudukadier Kuerban,Xia Dong,Zhang Jusong,Cui Jianping,Guo Rensong,Lin Tao. Effects of Drip Irrigation Frequency on Yield and Quality of Chemical Defoliated Cotton [J]. Crops, 2019, 35(4): 113-119.
[12] Qu Zhihua,Bai Wei,Zhang Lili,Li Feng,Hu Yang,Qiao Haiming. Main Agronomic Characteristics Analysis on 170 Flax Germplasm Resources [J]. Crops, 2019, 35(4): 77-83.
[13] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[14] Jinghong Tan,Luping Zhang,Qixia Wu,Jianqiang Zhu,Zaizhen Zhang. Comparative Research on the Effects of Reducing Nitrogen from Different Fertilizers on Cotton [J]. Crops, 2019, 35(1): 134-140.
[15] Tang Liyuan,Li Xinghe,Zhang Sujun,Wang Haitao,Liu Cunjing,Zhang Xiangyun,Zhang Jianhong. QTL Mapping for Photosynthesis Related Traits in Upland Cotton [J]. Crops, 2018, 34(5): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] . [J]. Crops, 2013, 29(1): 139 -140 .
[9] . [J]. Crops, 2012, 28(5): 8 -12 .
[10] . [J]. Crops, 2010, 26(6): 15 -19 .