Crops ›› 2019, Vol. 35 ›› Issue (6): 66-70.doi: 10.16035/j.issn.1001-7283.2019.06.010

Previous Articles     Next Articles

Correlation Analysis between Main Agronomic Traits and Density in Mechanical Harvest Cotton

Wang Yan,Wang Shulin,Zhang Qian,Feng Guoyi,Lei Xiaopeng,Liang Qinglong,Qi Hong   

  1. Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semi-Arid Region, Ministry of Agriculture and Rural Affairs/Hebei Branch of National Cotton Improvement Center, Shijiazhuang 050051, Hebei, China
  • Received:2019-04-01 Revised:2019-09-26 Online:2019-12-15 Published:2019-12-11
  • Contact: Hong Qi

Abstract:

To study the effects of density on the agronomic traits of mechanical harvest cotton, and to breed the plant variety suitable for mechanical harvest by increasing density. Field experiments with K836 were conducted with three planting densities (3×10 4, 6×10 4 and 9×10 4 plants/hm 2) to study the effects of density and its correlation analysis. The results showed that the plant height, the length of the fruit branch, the length of the first node in the fruit branch, the nodes per fruit branch, the fruit branches per plant and the dry weight per plant decreased with the increase of density. Compared with low density (3×10 4 plants/hm 2), high density (9×10 4 plants/hm 2) had lower single boll weight, higher lint percentage, lower bolls per plant and higher total bolls, but there was no significant effect on yield. The plant height, height of the first fruit branch, the node of the first fruit branch, the length of the fruit branch, the length of the first node of the fruit branch, the nodes per fruit branch, the branch angle, the fruit branches per plant were positively correlated with bolls per plant and dry weight per plant, negatively correlated with single boll weight and yield. Therefore,increasing the density could reduce the plant height, shorten the fruit branch and make the plant more compact. The plant density could be adjusted suitable for mechanical harvesting. The density of 9×10 4 plants/hm 2 in southern Hebei meets the requirements of mechanical harvesting.

Key words: Cotton, Planting density, Plant type, Mechanical harvest traits

Table 1

Effects of density on mechanical harvest agronomic traits of cotton"

密度
(×104株/hm2)
Density
(×104plants/hm2)
株高
Plant
height
(cm)
第一果枝高度
Height of the first fruit branch (cm)
第一果枝节位
Node of the first fruit branch
果枝长度
Length of the fruit branch
(cm)
果枝第一节位长度
Length of the first node of the fruit branch(cm)
果枝节数 Nodes
per fruit
branch
果枝夹角
Fruit
branch
angle(°)
单株果枝数
Fruit branches per plant
单株
干物质量
Dry weight
per plant (g)
3.00 102.2a 26.7b 7.1a 47.3a 15.0a 6.3a 65.0a 13.4a 149.02a
6.00 96.8ab 25.6b 6.7a 32.9b 12.4b 5.4a 61.3a 12.1b 124.87ab
9.00 89.5b 29.5a 6.8a 28.9b 12.1b 3.9b 60.1a 10.8c 90.92b

Table 2

Effects of density on unginned cotton yield and yield components"

密度(×104株/hm2)
Density (×104plants/hm2)
单铃重(g)
Single boll weight
单株铃数
Bolls per plant
总铃数(×104/hm2)
Total bolls
衣分(%)
Lint percentage
子棉产量(kg/hm2)
Unginned cotton yield
3.00 6.0a 18.2a 56.0c 37.9b 2 930.6a
6.00 5.9a 11.0b 67.5b 37.7b 3 336.3a
9.00 5.6b 9.5b 84.5a 38.4a 3 281.4a

Table 3

Variation coefficient of mechanical harvest agronomic traits of cotton"

项目
Item
株高
Plant
height
(cm)
第一果枝高度
Height of the first fruit
branch (cm)
果枝长度Length of the fruit branch
(cm)
果枝第一节位长度
Length of the first node
of the fruit branch
(cm)
果枝节数
Nodes per
fruit branch
单株果枝数
Fruit branches
per plant
单株干物质量
Dry weight
per plant (g)
单铃重
Single boll weight (g)
单株铃数
Bolls
per plant
衣分(%)
Lint percentage
均值Mean 96.2 27.3 36.5 13.1 5.2 12.1 121.6 5.8 12.9 38.0
标准差
Standard deviation
6.4 2.0 9.7 1.6 1.2 1.3 29.2 0.2 4.7 0.4
变异系数(%)
Variable coefficient
6.6 7.5 26.6 12.2 23.3 10.7 24.0 2.8 36.2 1.1

Table 4

Correlation matrix of cotton traits"

性状Trait X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y
X1 -1
X2 -0.352 -1
X3 -0.042 -0.108 -1
X4 -0.769* -0.211 -0.649 -1
X5 -0.405 -0.081 -0.843 -0.881** 1
X6 -0.723* -0.332 -0.512 -0.877** -0.787* -1
X7 -0.326 -0.233 -0.646 -0.577 -0.576 -0.450 -1
X8 -0.907** -0.292 -0.306 -0.864** -0.601 -0.877** -0.436 -1
X9 -0.600 -0.188 -0.599 -0.797* -0.710* -0.915** -0.521 -0.855** -1
X10 -0.118 -0.149 -0.171 -0.121 -0.148 -0.442 -0.329 -0.317 -0.604 -1
X11 -0.679* -0.178 -0.525 -0.851** -0.721 -0.698* -0.560 -0.849** -0.726* -0.114 -1
X12 -0.261 -0.501 -0.136 -0.236 -0.219 -0.620 -0.232 -0.440 -0.648 -0.839** -0.197 -1
Y -0.737* -0.046 -0.343 -0.795* -0.566 -0.577 -0.175 -0.733* -0.543 -0.151 -0.668* -0.174 1
[1] 董合忠, 张艳军, 张冬梅 , 等. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018,51(24):4615-4624.
doi: 10.3864/j.issn.0578-1752.2018.24.003
[2] 努斯热提·吾斯曼, 喻树迅, 范术丽 , 等. 陆地棉机采性状对皮棉产量的遗传贡献分析. 棉花学报, 2012,24(1):10-17.
doi: 1002-7807(2012)01-0010-08
[3] 邓福军, 林海, 宿俊吉 , 等. 棉花种植密度与产量形成的关系. 新疆农业科学, 2011,48(12):2191-2196.
[4] 黎芳, 杜明伟, 徐东永 , 等. 黄河流域不同密度及施氮量下增效缩节胺化学封顶对棉花生长、产量和熟期的影响. 中国农业大学学报, 2018,23(3):10-22.
[5] 李成奇, 王清连, 董娜 , 等. 棉花株型性状的遗传分析. 江苏农业学报, 2011,27(1):25-30.
[6] 董合忠, 毛树春, 张旺锋 , 等. 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014,47(3):441-451.
doi: 10.3864/j.issn.0578-1752.2014.03.004
[7] 董建军, 代建龙, 李霞 , 等. 黄河流域棉花轻简化栽培技术评述. 中国农业科学, 2017,50(22):64-72.
[8] 齐海坤, 严根土, 王宁 , 等. 黄河流域机采棉植株性状的筛选. 中国棉花, 2016,43(3):10-11.
doi: 10.11963/issn.1000-632X.201603003
[9] 王娟, 董承光, 余渝 , 等. 新疆机采棉主要机采性状的遗传分析. 西南农业学报, 2015,28(6):2421-2424.
[10] 程振勇, 吕海英, 周燕萍 , 等. 棉花工厂化育苗无土移栽密度对农艺性状的影响. 安徽农业科学, 2008,36(26):11285-11286.
[11] 王树林, 林永增, 祁虹 , 等. 冀南地区不同密度对棉花生长发育及产量品质的影响. 山东农业科学,2010(11):24-27.
[12] 周抑强, 张巨松, 陈冰 , 等. 新疆棉花高产的群体组合研究. 新疆农业大学学报, 1999,22(1):15-18.
[13] 邢晋, 张思平, 赵新华 , 等. 种植密度和缩节胺互作对棉花株型及产量的调控效应. 棉花学报, 2018,30(1):53-61.
doi: 10.11963/1002-7807.xjzlz.20171201
[14] Bednarz C W, Bridges D C, Brown S M . Analysis of cotton yield stability across population densities. Agronomy Journal, 2000,92(1):128-135.
doi: 10.7326/0003-4819-92-1-128 pmid: 7188676
[15] Siebert J D, Stewart A M . Influence of plant density on cotton response to mepiquat chloride application. Agronomy Journal, 2006,98(6):1634-1639.
doi: 10.1021/ja00422a086 pmid: 1249375
[16] 马一学, 阳会兵, 陈金湘 , 等. 棉花种植方式和密度效应研究. 作物研究, 2014,28(3):269-271.
[17] 赵振勇, 田长彦, 马英杰 , 等. 高密度种植下棉花群体质量主要指标研究. 干旱地区农业研究, 2004,22(3):9-13.
[18] Constable G A . Growth and light receipt by mainstem cotton leaves in relation to plant density in the field. Agricultural and Forest Meteorology, 1986,37(4):279-292.
doi: 10.1016/0168-1923(86)90066-3
[19] Jenkins J N, Mccarty J C, Parrott W L . Fruiting efficiency in cotton:boll size and boll set percentage. Crop Science, 1990,30(4):857-860.
doi: 10.2135/cropsci1990.0011183X003000040018x
[20] 刘素华, 彭延, 彭小峰 , 等. 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响. 棉花学报, 2016,28(2):184-188.
doi: 10.11963/issn.1002-7807.201602012
[21] 李春艳, 张巨松, 向雁玲 , 等. 密度与氮肥对机采棉生长特性及产量的影响. 南京农业大学学报, 2018,41(4):633-639.
[1] Li Hu,Chen Chuanhua,Liu Guanglin,Wu Zishuai,Huang Qiuyao,Luo Qunchang. Effects of Nitrogen Fertilizer Application Rate and Planting Density on Agronomic Traits and Yield of Guiyu 9 [J]. Crops, 2019, 35(6): 99-103.
[2] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province [J]. Crops, 2019, 35(5): 1-8.
[3] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[4] Abudukadier Kuerban,Xia Dong,Zhang Jusong,Cui Jianping,Guo Rensong,Lin Tao. Effects of Drip Irrigation Frequency on Yield and Quality of Chemical Defoliated Cotton [J]. Crops, 2019, 35(4): 113-119.
[5] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[6] Jinghong Tan,Luping Zhang,Qixia Wu,Jianqiang Zhu,Zaizhen Zhang. Comparative Research on the Effects of Reducing Nitrogen from Different Fertilizers on Cotton [J]. Crops, 2019, 35(1): 134-140.
[7] Wang Lezheng,Hua Fangjing,Cao Pengpeng,Tian Yixin,Gao Fengju. Effects of Sowing Date and Planting Density on Yield and Related Traits in Adzuki Bean [J]. Crops, 2018, 34(6): 83-88.
[8] Tang Liyuan,Li Xinghe,Zhang Sujun,Wang Haitao,Liu Cunjing,Zhang Xiangyun,Zhang Jianhong. QTL Mapping for Photosynthesis Related Traits in Upland Cotton [J]. Crops, 2018, 34(5): 85-90.
[9] Zhang Xiangyu,Li Hai,Liang Haiyan,Zhang Zhi,Song Xiaoqiang,Zheng Minna. Effects of Different Row Spacing and Planting Density on the Growth Characteristics and Yield of Millet [J]. Crops, 2018, 34(5): 91-96.
[10] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94.
[11] Wen Zhang,Tao Lu,Yuxia Ye,Quanyi Liu,Yang Feng. Studies on the Effect of Mixed Defoliant on Cotton in Kuitun District, Xinjiang [J]. Crops, 2018, 34(3): 103-107.
[12] Junshuai Lu,Yunxiang Li,Xingfu Wang,Guohua Gao,Xia Yang,Jing Liang. Effects of High-Density on Agronomic Traits and Yield of Maize Varieties in Yellow River Irrigation Areas of Gansu Province [J]. Crops, 2018, 34(2): 97-102.
[13] Haijun He,Xiaojuan Wang,Sirong Kou. Effects of Different Planting Density on Photosynthetic Characteristics and Yield of Maize in Dry Area [J]. Crops, 2017, 33(6): 91-95.
[14] Yanlong Gong,Yue Lei,Yuanye Xia,Zhimin Du,Hai Xu. Effects of Cytokinins Used at Panicle Differentiation Stage on Panicle Traits and Plant Type Traits of Rice [J]. Crops, 2017, 33(5): 112-118.
[15] Haihua Luo,Deyi Shao,Gong Chen,Xiumin Xu,Xin Gao,Changkai Yuan,Jinjian Peng,Feiyu Tang. Comparative Analysis of Trait Correlation between Conventional Varieties (Lines) and Hybrids of Cotton [J]. Crops, 2017, 33(5): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .