Crops ›› 2021, Vol. 37 ›› Issue (2): 15-21.doi: 10.16035/j.issn.1001-7283.2021.02.002
Previous Articles Next Articles
Wei Yanqiu1(), Jing Yizhuo1, Guo Xiaoheng1, Zhang Li2, Han Dan1(), Shao Huifang1()
[1] | 陆国伟, 陈晓斌. 环境保护与盐碱化荒地治理研究. 环境科学与管理, 2018,43(8):13-16. |
[2] | 李娟. 生命微量元素硒环境营养背景研究. 贵阳:贵州师范大学, 2000. |
[3] | Lan C Y, Lin K H, Huang W D, et al. Protective effects of selenium on wheat seedlings under salt stress. Agronomy, 2019,9(6):274-286. |
[4] | 高菲, 戴志华, 韩丹, 等. 硒影响植物抗氧化系统的作用与机制. 生物技术进展, 2017,7(5):467-472. |
[5] | 王华, 张雅娟, 周武先, 等. 外源硒对白术种子萌发及幼苗生理特性的影响. 分子植物育种, 2019,17(22):7551-7558. |
[6] | 曹升, 王颖, 陈会鲜, 等. 外源硒对食用木薯品质的影响研究. 作物杂志, 2020(1):168-172. |
[7] | 刘婷, 候运和, 郑甲成. 外源硒对碎米荠农艺性状及硒含量的影响. 湖北民族学院学报(自然科学版), 2018,36(4):365-369. |
[8] | 位晶, 牛乐, 唐宏亮. 不同硒形态对玉米根系形态和养分吸收的影响. 安徽农业科学, 2019,47(4):161-165. |
[9] | Fan J, Wan H, Wang R, et al. Growth and physiological characteristics of flue-cured tobacco (Nicotiana Tabacum L.) under selenate-Se stress. Communications in Soil Science and Plant Analysis, 2018,49(18):2238-2246. |
[10] | 韩丹, 熊双莲, 许自成, 等. 硒对烤烟生长、化学指标及矿质营养元素含量的影响. 核农学报, 2017,31(10):2072-2079. |
[11] | 金小琬, 朱茜, 黄进, 等. 硒对叶绿体及光合作用的影响. 分子植物育种, 2019,17(1):288-294. |
[12] | Jiang C Q, Zu C L, Lu D J, et al. Effect of exogenous selenium supply on photosynthesis,Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 2017,7:42039. |
[13] | 台培东, 李培军. 硒对植物的毒害作用. 农业环境科学学报, 2002(6):496-498. |
[14] | Anjum S A, Ashraf U, Zohaib A, et al. Growth and developmental responses of crop plants under drought stress:a review. Zemdirbyste, 2017,104(3):267-276. |
[15] | Pessione E, Pessione A, Mangiapane E. Selenium and selenoproteins:an overview on different biological systems. Current Protein and Peptide Science, 2014,15(6):598-607. |
[16] | 王锐, 余涛, 曾庆良, 等. 我国主要农耕区土壤硒含量分布特征、来源及影响因素. 生物技术进展, 2017(5):359-366. |
[17] | 邢颖, 刘永贤, 梁潘霞, 等. 土壤硒形态及其相互转化因子的研究. 中国农学通报, 2018,34(17):83-88. |
[18] | Schiavon M, Lima L W, Jiang Y, et al. Effects of selenium on plant metabolism and implications for crops and consumers. Selenium in Plants, 2017,11:257-275. |
[19] | Harris J, Schneberg K A, Pilon-Smits E A H. Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata,from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta, 2014,239(2):479-491. |
[20] | 张雯, 秦璐, 杨林红, 等. 不同硫浓度下硒镉交互作用对油菜幼苗生长特性的影响. 新疆环境保护, 2018,40(4):11-16. |
[21] | 王卫真, 唐家俊, 彭安. 富硒大蒜含硒蛋白的分离、鉴定和生物活性研究. 生物化学杂志, 1989(3):229-234. |
[22] | Kassis E, Cathala N, Rouached H, et al. Characterization of a selenate-resistant arabidopsis mutant. root growth as a potential target for selenate toxicity. Plant Physiology, 2007,143(3):1231-1241. |
[23] | Michela, Schiavon, Marinus, et al. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 2015,6:2. |
[24] | 韩丹. 硒在烤烟中的累积、形态转化及缓解砷毒害的机理研究. 武汉:华中农业大学, 2015. |
[25] | Barbara, Hawrylak-Nowak. Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biologica Cracoviensia Series Botanica, 2015,57(2):49-54. |
[26] | Jiang Y, Feng X, Yang Y, et al. Performance of common buckwheat (Fagopyrum esculentum M.) supplied with selenite or selenate for selenium biofortification in northeastern China. The Crop Journal, 2018,6(4):386-393. |
[27] | Zhang L, Hu B, Li W, et al. OsPT2,a phosphate transporter,is involved in the active uptake of selenite in rice. The New phytologist, 2014,201(4):1183-1191. |
[28] | 姜英. 荞麦硒生物强化及植物硒代谢关键酶ATPS2特性研究. 北京:中国农业大学, 2018. |
[29] | Tian S, Lu L, Xie R, et al. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence. Frontiers in Plant Science, 2015,5:808. |
[30] | 陈玉真, 单睿阳, 王峰, 等. 天然硒在茶园土壤-茶树-茶汤中吸收转运特征. 茶叶学报, 2019,60(3):106-113. |
[31] | Wang M K, Dinh Q T, Qi M M, et al. Radicular and foliar uptake,and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.):a comparison of five Se exogenous species. Plant and Soil, 2020,446(1):111-123. |
[32] | Malheiros R S P, Gonçalves F C M, Brito F A L, et al. Selenomethionine induces oxidative stress and modifies growth in rice (Oryza sativa L.) seedlings through effects on hormone biosynthesis and primary metabolism. Ecotoxicology and Environmental Safety, 2020,189(2):1-10. |
[33] | Leduc D L, Abdelsamie M, Montes-Bayon M, et al. Overex-pressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 2006,144(1):70-76. |
[34] | Wu Z C, Xu S J, Shi H Z, et al. Comparison of foliar silicon and selenium on cadmium absorption,compartmentation,translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicology and Environmental Safety, 2018,166:157-164. |
[35] | 王昊伟, 杨玲, 鲁强, 等. 盐胁迫对大花四照花种子萌发与幼苗生长的影响. 南京林业大学学报(自然科学版), 2020,44(3):89-94. |
[36] | Abbasi H, Jamil M, Haq A, et al. Salt stress manifestation on plants,mechanism of salt tolerance and potassium role in alleviating it:a review. Zemdirbyste-Agriculture, 2016,103(2):229-238. |
[37] | Elkelish A A, Soliman M H, Alhaithloul H A, et al. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiology and Biochemistry, 2019,137:144-153. |
[38] | Zaman B, Niazi B H, Ahmad M A. Response of wheat plants to sodium and calcium ion interaction under saline environment. International Journal of Environment Science and Technology, 2005,2(1):7-12. |
[39] | Alla M M N, Badran E G, Mohammed F A, et al. Overexpression of Na+- manipulating genes in wheat by selenium is associated with antioxidant enforcement for enhancement of salinity tolerance. Rendiconti Lincei. Scienze Fisiche e Naturali, 2020,31(1):177-187. |
[40] | 韩广泉, 李俊, 宋曼曼, 等. 硒对盐胁迫下加工番茄种子萌发及抗氧化酶系统的影响. 石河子大学学报(自然科学版), 2010,28(4):422-426. |
[41] | Subramanyam K, Du Laing G, Van Damme E J M. Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Frontiers in Plant Science, 2019,10:116. |
[42] | 孙协平, 罗友进, 周广文. 硒对甜樱桃叶片褪黑素和谷胱甘肽氧化还原循环的影响. 中国农业科学, 2017,50(22):4373-4381. |
[43] | 杨晓慧, 蒋卫杰, 魏珉 等. 盐胁迫下硒对生菜生长发育的影响. 中国农学通报, 2006(3):271-274. |
[44] | Diao M, Ma L, Wang J, et al. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation, 2014,33(3):671-682. |
[45] | 马龙, 喻晓强, 樊新民. 外源硒对盐胁迫下加工番茄幼苗叶片抗氧化系统的调控效应. 北方园艺, 2013(3):4-8. |
[46] | 曹丽华, 朱娟娟. 外源硒调控盐胁迫下小白菜种子萌发特性和生理特性研究. 北方园艺, 2019(2):1-7. |
[47] | 荆培培, 任红茹, 杨洪建, 等. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响. 作物杂志, 2020(1):67-75. |
[48] | Habibi G. Učinek sušnega stresa in škropljenja s selenom na fotosintezo in antioksidativno aktivnost jarega ječmena. Acta Agriculturae Slovenica, 2013,101(1):31-39. |
[49] | Liu X, An B, Gu N, et al. Response of leaf photosynthetic characteristics of Syringa oblata and Syringa reticulata var. mandshurica to chilling stress. Journal of Forestry Research, 2019,31(1):1-10. |
[50] | Bot P J, Abbasi G H, Akhtar J, et al. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 2014,46(1):135-146. |
[51] | Kaur S, Nayyar H. Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake,improves reproductive function,pod set and seed yield. Scientia Horticulturae, 2015,197:304-317. |
[52] | Ashraf M A, Akbar A, Parveen A, et al. Phenological application of selenium differentially improves growth,oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry, 2018,123:268-280. |
[53] | 金伊楠, 许自成, 张环纬, 等. 烟草盐胁迫与耐盐相关基因的研究进展. 中国烟草学报, 2018,24(6):112-118. |
[54] | Feki K, Tounsi S, Masmoudi K, et al. The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. Protoplasma, 2017,254:1725-1734. |
[55] | 李茹玉, 柴薇薇, 郭晓农, 等. 盐处理对罗布麻(Apocynum venetum)幼苗渗透调节的影响. 分子植物育种, 2020,18(2):4105-4110. |
[56] | 赖弟利, 范昱, 朱红林, 等. 燕麦耐盐性的生理生化指标网络分析. 作物杂志, 2020(2):147-155. |
[57] | 马书荣, 李韫, 石美玉, 等. 盐碱胁迫对蒙古柳无性系生理特性的影响. 分子植物育种, 2021,19(3):1004-1013. |
[58] | Ardebili N O, Saadatmand S, Niknam V, et al. The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum, 2014,36(12):3199-3205. |
[59] | 付爱飞, 权桂芝, 刘慧英, 等. 硒对盐胁迫下番茄幼苗叶片渗透调节物质及生理指标的影响. 石河子大学学报(自然科学版), 2008,26(5):587-590. |
[60] | Ram P, Atanu B, Nguyen Q D. Nanotechnology in sustainable agriculture:recent developments,challenges,and perspectives. Frontiers in Microbiology, 2017,8:1014-1021. |
[61] | Domokos-Szabolcsy E, Marton L, Sztrik A, et al. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regulation, 2012,68(3):525-531. |
[62] | Zsiros O, Nagy V, Párducz R, et al. Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynthesis Research, 2019,139(1):449-460. |
[63] | Djanaguiraman M, Belliraj N, Bossmann S H, et al. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 2018,3(3):2479-2491. |
[64] | Safari M, Ardebili Z O, Iranbakhsh A. Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A),and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 2018,40(6):1-8. |
[65] | Reza S, Alireza I, Ghader H, et al. Selenium nanoparticle protected strawberry against salt stress through modification in salicylic acid,ion homeostasis,antioxidant machinery,and photosynthesis performance. Acta Biologica Cracoviensia Series Botanica, 2020,62(1):33-42. |
[66] | Zahedi S M, Abdelrahman M, Hosseini M S, et al. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 2019,253:246-258. |
[67] | Morales-Espinoza M C, Cadenas-Pliego G, Perez-Alvarez M, et al. Se nanoparticles induce changes in the growth,antioxidant responses,and fruit quality of tomato developed under NaCl stress. Molecules, 2019,24(17):3030. |
[1] | Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232. |
[2] | Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72. |
[3] | Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10. |
[4] | Chen Jinping, Pan Liping, Xing Ying, Liao Qing, Liu Yongxian, Che Jianglü. Study on the Effects of Exogenous Jasmonic Acid on Selenium Tolerance and Selenium Accumulation in Pak Choi (Brassica chinensis L.) [J]. Crops, 2023, 39(6): 160-166. |
[5] | Fang Wenying, Zhu Defeng, Huai Yan, Chen Jiaqi, Chen Huizhe, Wang Yaliang. Analysis on the Effects of Precision Drill Sowing in Machine Transplanting for Single-Season Hybrid Rice to Improve Yield of Sparsely Planted Population [J]. Crops, 2023, 39(5): 124-130. |
[6] | Li Wei, Meng Pingzhu, Li Caidi, Yan Zhengang. Analysis of Influencing Factors of Carbon Emissions from Planting Production Based on LMDI Model and Approaches of Carbon Mitigation in Gansu Province [J]. Crops, 2023, 39(5): 264-271. |
[7] | Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181. |
[8] | Li Yue, Ning Dan, Lü Yufeng, Zhang Bin, Xue Zhiqiang, Jia Juqing, Feng Meichen, Song Xiaoyan, Zhang Meijun, Yang Wude. Effects of Foliar Spraying Selenium on Selenium Accumulation of Oat Varieties and Evaluation of Their Comprehensive Traits [J]. Crops, 2023, 39(4): 215-223. |
[9] | Yang Hongwei, Zhang Liying, Li Xiaohui. Research on the Moisture Content Variation and Influence to Rice Seed Germination under Salt and Alkali Stress by Low Field NMR [J]. Crops, 2023, 39(4): 253-259. |
[10] | Wang Xiaochun, Gao Ting, Yang Weidi, Wang Chuan, Chen Caijin. Study on Embryogenic Callus Induction and Embryoid Differentiation of Alfalfa [J]. Crops, 2023, 39(4): 98-103. |
[11] | Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115. |
[12] | Xu Xuewen, Wang Xingpeng, Wang Hongbo, Li Guohui, Tang Maosong, Cao Zhenxi. Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress [J]. Crops, 2023, 39(3): 188-194. |
[13] | Luan Jinhua, Song Xinyang, Wang Lei, Sun Lili, Cheng Yanshuang, Dong Hao, Zhang Jia, Cheng Xiaoyi, Xu Hai. Differences Research in Salt Tolerance of New Rice Lines at Seedling Stage in Liaoning [J]. Crops, 2023, 39(3): 20-26. |
[14] | Si Zhenxing, Liang Zhizhe, Qian Jiancai, Xu Zicheng, Li Junling, Zhang Yudan, Zhang Li, Jia Wei. Research Progress on Absorption, Transportation and Metabolism Mechanism of Selenium in Plants [J]. Crops, 2023, 39(2): 1-9. |
[15] | Yang Xuhong. Discussion on the Informatization of DUS Test Guidelines and Standards Management of Agricultural Plant Varieties [J]. Crops, 2023, 39(2): 10-15. |
|